

Cross Platform
Application
Development

2024

Dr. Babasaheb Ambedkar Open University

Expert Committee

Prof. (Dr.) Nilesh Modi
Professor and Director, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Chairman)

Prof. (Dr.) Ajay Parikh
Professor and Head, Department of Computer Science
Gujarat Vidyapith, Ahmedabad

(Member)

Prof. (Dr.) Satyen Parikh
Dean, School of Computer Science and Application
Ganpat University, Kherva, Mahesana

(Member)

Prof. M. T. Savaliya
Associate Professor and Head, Computer Engineering Department
Vishwakarma Engineering College, Ahmedabad

(Member)

Dr. Himanshu Patel
Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

(Member Secretary)

Course Writer

Dr. Himanshu Patel
Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

Subject Reviewer

Mrs. Vishakha Patel
Team Leader, SWISS Infotech, Bhavnagar

Editors

Prof. (Dr.) Nilesh Modi
Professor and Director, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

Dr. Himanshu Patel
Assistant Professor, School of Computer Science,
Dr. Babasaheb Ambedkar Open University, Ahmedabad

Acknowledgement: “The content in this book is modifications based on work created and
shared by the Flutter documentation (https://docs.flutter.dev/) and used according to terms
described in the Creative Commons 4.0 Attribution License.”

June 2024, © Dr. Babasaheb Ambedkar Open University

ISBN-

Printed and published by: Dr. Babasaheb Ambedkar Open University, Ahmedabad

http://creativecommons.org/licenses/by/4.0/

iii

Dr. Babasaheb
Ambedkar Open
University

MCA-303

Cross Platform Application Development

Block-1: Introduction to Flutter and Dart

Unit-1: Introduction to Cross Platform Application Development

Unit-2: Introduction to Dart Language

Unit-3: Getting Started with Flutter

Block-2: Flutter Basics

Unit-4: Understanding Flutter Widgets

Unit-5: Building User Interfaces with Flutter

Unit-6: State Management in Flutter

Unit-7: Working with Flutter Navigation

Block-3: Flutter Application Data Management

Unit-8: Integrating APIs and Working with Data

Unit-9: Storing Data Locally

Unit-10: Working with Firebase in Flutter

Block-4: Advanced Flutter

Unit-11: Building and Deploying Multi-Platform Applications

Unit-12: Performance Optimization in Flutter

Unit-13: Custom Widgets and Plugins

Unit-14: Testing in Flutter

Unit-15: Flutter for the Web and Desktop

1

Block-1
Introduction

to
Flutter and Dart

2

Unit-1: Introduction to Cross
Platform Application

Development

Unit Structure

1.1. Learning Objectives

1.2. Cross Platform Application Development

1.3. Introduction to Flutter

1.4. History of Flutter

1.5. Key Features of Flutter

1.6. Advantages of Flutter

1.7. Disadvantages of Flutter

1.8. Applications of Flutter

1.9. Flutter Architecture

1.10. Let us sum up

1.11. Check your Progress: Possible Answers

1.12. Further Reading

1.13. Assignment

1

3

1.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Define: Cross Platform Applicaation Development

• Know History of Flutter application development

• What is Flutter? and List Key Features of Flutter

• Enumerate advantate, disadvantage and applications of Flutter

• Describe Flutter features and Understand Flutter architecture

• Enumerate factors that affect Mobile Application development

1.2 CROSS PLATFORM APPLICATION DEVELOPMENT

Cross-platform development is the practice of creating software applications that can

run on multiple operating systems or platforms (such as Android, iOS, Windows,

macOS, Linux, etc.) using a single codebase. Instead of writing separate versions of

an app for each platform, cross-platform development allows developers to write the

code once and deploy it across multiple environments with minimal changes.

Key Benefits of Cross-Platform Development:

1. Code Reusability: Developers can reuse a large portion of the code across

different platforms, saving time and effort.

2. Cost Efficiency: It reduces the cost of development since one team can handle

both iOS and Android (or other platforms) rather than separate teams for each.

3. Consistent User Experience: With a shared codebase, it’s easier to ensure that

the app provides a consistent experience across platforms.

4. Faster Time to Market: Since the code is written once and deployed across

platforms, the development cycle is shorter.

5. Easier Maintenance: Any updates or bug fixes can be made in one place and

applied across all platforms simultaneously.

Popular Cross-Platform Development Frameworks:

1. Flutter: Developed by Google, it uses Dart and provides native performance,

expressive UIs, and a fast development cycle.

4

2. React Native: Built by Facebook, it uses JavaScript and allows developers to

build mobile apps that work across platforms.

3. Xamarin: Owned by Microsoft, it uses C# and enables code sharing across iOS,

Android, and Windows.

4. Ionic: Based on Angular, it allows building hybrid mobile apps with web

technologies.

How It Works:

There are two working models used by Cross-platform frameworks:

1. Abstraction Layers: Cross-platform frameworks provide an abstraction layer

between the app's code and the underlying platform APIs, allowing the app to

work on different platforms without having to reimplement platform-specific code.

2. Native and Hybrid Approaches: Some frameworks (like React Native and

Flutter) provide near-native performance by compiling to native code, while

others (like Ionic) are more web-based and rely on a browser environment within

the app.

Challenges:

Major challenges faced by the Cross-platform application development are:

• Performance: Some cross-platform frameworks may not achieve the same level

of performance as fully native apps, especially in complex or resource-intensive

applications.

• Platform-Specific Features: While most frameworks provide access to common

device features, developers may need to write platform-specific code or plugins

for some unique functionalities.

• UI Consistency: Ensuring a native-like look and feel across different platforms

can sometimes require additional work.

1.3 INTRODUCTION TO FLUTTER

Flutter is an open-source UI software development kit (SDK) created by Google. It is

used to develop cross-platform applications from a single codebase. This means that

5

with Flutter, you can build apps for Android, iOS, web, desktop (Windows, macOS,

Linux), and even embedded devices, all using the same codebase.

Flutter is a framework that allows developers to build natively compiled applications

across multiple platforms using a single programming language, Dart. The

framework includes a rich set of pre-designed widgets, tools, and libraries that help

developers create visually appealing and highly responsive applications. The use of

widgets in Flutter is central to its design, making it easy to customize and create a

consistent look and feel across different platforms.

Flutter represents a significant shift in how developers can create applications across

multiple platforms. By providing a single codebase that works on mobile, web,

desktop, and embedded systems, Flutter offers a versatile, efficient, and powerful

solution for modern app development. Whether you are a beginner or an

experienced developer, learning Flutter can open up new opportunities and

streamline your development process.

Overall, Flutter is popular among developers for its ability to simplify the process of

building cross-platform apps, reducing development time and effort while delivering

high-quality, natively compiled applications.

1.4 HISTORY OF FLUTTER

Flutter has an interesting history that reflects Google's efforts to streamline and

modernize app development across multiple platforms. Here's an overview:

1. Initial Development and Announcement (2015-2017)

• 2015: Flutter began as an internal project at Google under the codename "Sky."

The initial goal was to create a platform that could render consistently at 120

frames per second on Android.

• May 2017: Flutter was officially announced at Google I/O 2017. At this stage, it

was still in an early alpha version. Google introduced Flutter as a way to build

high-performance, high-fidelity mobile apps for iOS and Android from a single

codebase.

6

2. Beta and Preview Releases (2018)

• February 2018: Flutter reached its first beta release. This was a significant

milestone as it marked the SDK's readiness for broader developer adoption.

During this time, Google emphasized the benefits of Flutter's fast development

cycle, expressive and flexible UI, and native performance.

• May 2018: At Google I/O 2018, Google announced the release of Flutter Beta 3.

This version included support for Visual Studio Code, new widgets, and improved

documentation, making it more accessible and feature-rich.

3. Stable Release (2018)

• December 4, 2018: Flutter 1.0 was released at the Flutter Live event in London.

This marked the official stable release of Flutter, making it production-ready for

developers to use in building commercial apps. The launch was accompanied by

a growing ecosystem of packages and plugins, enabling developers to integrate

various functionalities into their apps easily.

4. Expanding to Web and Desktop (2019-2020)

• May 2019: At Google I/O 2019, Google introduced "Flutter for Web," a technical

preview that extended Flutter’s capabilities to web applications. This was part of a

broader strategy to make Flutter a truly cross-platform framework.

• 2020: Google further expanded Flutter to include support for desktop platforms

(Windows, macOS, and Linux). These developments were part of the "Flutter

Everywhere" initiative, aiming to provide a unified development experience

across all major platforms.

5. Flutter 2.0 and Beyond (2021-Present)

• March 3, 2021: Google released Flutter 2.0, a significant update that included

stable support for web applications and an improved experience for desktop

apps. This version also introduced "Flutter DevTools," providing developers with

better tools for debugging and performance optimization.

• September 2021: Flutter 2.5 was released, bringing performance improvements,

better DevTools, and updated material design components. Google also began

focusing on improving the developer experience with better documentation and

community support.

7

6. Recent Developments (2022-Present)

• Flutter continues to evolve with regular updates, introducing new features,

performance enhancements, and expanding support for new platforms and

devices. The community and ecosystem around Flutter have grown

significantly, making it one of the most popular frameworks for cross-platform

app development.

Flutter's history reflects its evolution from an experimental project to a fully-fledged

framework that is now widely adopted for building applications across a variety of

platforms.

1.5 KEY FEATURES OF FLUTTER

1. Dart Language: Flutter apps are written in Dart, a programming language also

developed by Google. Dart is designed for fast and efficient app development.

2. Widgets: Flutter is based on a rich set of customizable widgets, which are the

building blocks of the user interface. Everything in Flutter is a widget, from

buttons to padding to layouts.

3. Hot Reload: Flutter offers a "hot reload" feature, allowing developers to see

changes in real-time without restarting the app, making the development process

faster and more efficient.

4. Performance: Flutter apps are compiled directly to native ARM code, meaning

they can achieve high performance similar to native apps.

5. Customizable UI: Flutter allows for highly customizable and flexible UI designs,

thanks to its widget-based architecture. Developers can create visually rich,

custom user interfaces that look consistent across different platforms.

6. Strong Community and Ecosystem: Being an open-source project, Flutter has

a large and active community, with many third-party packages and plugins

available to extend its functionality.

7. Skia Graphics Engine: Flutter uses the Skia graphics engine to render visuals,

which ensures high-quality and smooth animations across all platforms.

8

1.6 ADVANTAGES OF FLUTTER

Following are the major advantages of Flutter framework

Cross-Platform Development:

• Single Codebase: With Flutter, developers can write a single codebase and

deploy it across multiple platforms (iOS, Android, Web, Desktop). This

significantly reduces development time and effort.

• Consistent UI/UX: Flutter provides a consistent look and feel across platforms,

ensuring a uniform user experience.

High Performance:

• Native Compilation: Flutter compiles to native ARM code, which ensures high

performance and fast execution on mobile devices.

• GPU Rendering: The framework uses the Skia graphics engine, enabling

smooth and fast UI rendering, even for complex animations.

Hot Reload:

• Rapid Iteration: Flutter’s hot reload feature allows developers to see changes

instantly without restarting the app. This accelerates development, debugging,

and experimentation.

Rich Set of Widgets:

• Customizable UI Components: Flutter comes with a wide range of pre-

designed widgets that are highly customizable, enabling developers to create

complex and visually appealing user interfaces.

• Platform-Specific Design: Flutter’s widgets adapt to the design conventions of

the target platform, such as Material Design for Android and Cupertino for iOS.

Strong Community and Ecosystem:

• Open-Source: Being an open-source project, Flutter has a large and active

community, which contributes to a growing ecosystem of libraries, tools, and

resources.

9

• Extensive Documentation: Flutter offers comprehensive documentation,

tutorials, and a supportive community, making it easier for developers to learn

and solve problems.

Flexibility and Customization:

• Custom Animations: Flutter provides powerful tools for creating custom

animations and transitions, allowing developers to build engaging user

experiences.

• Third-Party Integrations: Flutter supports integration with a wide range of third-

party services and libraries, expanding its capabilities.

Check Your Progress-1

a) What is cross-platform application development?

b) What is Flutter?

c) What is latest version of Flutter?

d) Flutter is an open-source UI software development kit (SDK) created

by Google. (True/False)

e) React Native framwork is built by Microsoft.

f) Xamarin is Based on Angular, it allows building hybrid mobile apps

with web technologies. (True/False)

g) Flutter offers a "hot reload" feature, allowing developers to see changes in real-

time without restarting the app (True/False)

1.7 DISADVANTAGES OF FLUTTER

Flutter is a powerful and flexible framework that offers many advantages for cross-

platform development, particularly for mobile applications. However, it also has some

limitations, such as larger app sizes and potential challenges in managing complex

projects. When considering Flutter, it's essential to weigh these pros and cons based

on the specific needs and goals of your project.

10

Large App Size:

• Heavy Initial Package: Flutter apps tend to have a larger binary size compared

to native apps due to the inclusion of the Flutter engine and framework libraries.

This can be a concern for users with limited storage space.

Limited Native APIs:

• Platform-Specific Features: While Flutter provides access to many native

features, some platform-specific APIs might require additional work, such as

writing native code or using third-party plugins.

• Lag in New Features: New features and APIs released by iOS or Android may

take time to be fully supported in Flutter.

Complexity for Larger Projects:

• Scalability Issues: For very large and complex applications, managing a single

codebase across multiple platforms can become challenging, especially if there

are significant differences in platform requirements.

• State Management: Managing state in Flutter can become complex in large

applications, requiring careful planning and use of state management libraries.

Learning Curve:

• Dart Language: Flutter uses Dart, which is not as widely adopted as other

languages like JavaScript, Swift, or Kotlin. Developers unfamiliar with Dart may

face a learning curve.

• Custom Development Practices: Flutter’s approach to UI design and

development, which heavily relies on widgets, may require developers to adapt to

new design patterns and practices.

Limited Web and Desktop Support:

• Maturity Level: While Flutter has expanded to support web and desktop

applications, these platforms are still not as mature as mobile support, leading to

potential limitations or bugs.

• Performance Issues: Web and desktop apps built with Flutter might not yet

match the performance and feature parity of those built with native or other

mature web/desktop frameworks.

11

1.8 APPLICATIONS OF FLUTTER

Cross-platform development is ideal for businesses or developers who want to reach

a wide audience quickly and efficiently while minimizing the effort needed to manage

different versions of an app.Flutter is used by a wide range of companies and

developers for various types of applications, including:

• Mobile Applications: With Flutter, developers can create high-performance

mobile applications for both Android and iOS.

• Web Applications: Flutter for Web allows developers to create web apps with

the same codebase used for mobile apps.

• Desktop Applications: Flutter also supports the development of desktop

applications for Windows, macOS, and Linux.

• Embedded Applications: Flutter can be used for embedded devices, offering

the potential for a wide range of IoT applications.

1.9 FLUTTER ARCHITECTURE

Flutter is a cross-platform UI toolkit that is designed to allow code reuse across

operating systems such as iOS and Android, while also allowing applications to

interface directly with underlying platform services. The goal is to enable developers

to deliver high-performance apps that feel natural on different platforms, embracing

differences where they exist while sharing as much code as possible.

During development, Flutter apps run in a VM that offers stateful hot reload of

changes without needing a full recompile. For release, Flutter apps are compiled

directly to machine code, whether Intel x64 or ARM instructions, or to JavaScript if

targeting the web. The framework is open source, with a permissive BSD license,

and has a thriving ecosystem of third-party packages that supplement the core

library functionality.

Architectural layers

Flutter is designed as an extensible, layered system. It exists as a series of

independent libraries that each depend on the underlying layer. No layer has

12

privileged access to the layer below, and every part of the framework level is

designed to be optional and replaceable.

Figure-1: Flutter Architectural Layer

To the underlying operating system, Flutter applications are packaged in the same

way as any other native application. A platform-specific embedder provides an

entrypoint; coordinates with the underlying operating system for access to services

like rendering surfaces, accessibility, and input; and manages the message event

loop. The embedder is written in a language that is appropriate for the platform:

currently Java and C++ for Android, Objective-C/Objective-C++ for iOS and macOS,

and C++ for Windows and Linux. Using the embedder, Flutter code can be

integrated into an existing application as a module, or the code might be the entire

content of the application. Flutter includes a number of embedders for common

target platforms, but other embedders also exist.

13

At the core of Flutter is the Flutter engine, which is mostly written in C++ and

supports the primitives necessary to support all Flutter applications. The engine is

responsible for rasterizing composited scenes whenever a new frame needs to be

painted. It provides the low-level implementation of Flutter's core API, including

graphics (through Impeller on iOS and coming to Android and macOS, and Skia on

other platforms) text layout, file and network I/O, accessibility support, plugin

architecture, and a Dart runtime and compile toolchain.

The engine is exposed to the Flutter framework through dart:ui, which wraps the

underlying C++ code in Dart classes. This library exposes the lowest-level primitives,

such as classes for driving input, graphics, and text rendering subsystems.

Typically, developers interact with Flutter through the Flutter framework, which

provides a modern, reactive framework written in the Dart language. It includes a rich

set of platform, layout, and foundational libraries, composed of a series of layers.

Working from the bottom to the top, we have:

• Basic foundational classes, and building block services such

as animation, painting, and gestures that offer commonly used abstractions

over the underlying foundation.

• The rendering layer provides an abstraction for dealing with layout. With this

layer, you can build a tree of renderable objects. You can manipulate these

objects dynamically, with the tree automatically updating the layout to reflect your

changes.

• The widgets layer is a composition abstraction. Each render object in the

rendering layer has a corresponding class in the widgets layer. In addition, the

widgets layer allows you to define combinations of classes that you can reuse.

This is the layer at which the reactive programming model is introduced.

• The Material and Cupertino libraries offer comprehensive sets of controls that

use the widget layer's composition primitives to implement the Material or iOS

design languages.

The Flutter framework is relatively small; many higher-level features that developers

might use are implemented as packages, including platform plugins

like camera and webview, as well as platform-agnostic features like characters, http,

and animations that build upon the core Dart and Flutter libraries. Some of these

14

packages come from the broader ecosystem, covering services like in-app

payments, Apple authentication, and animations.

Check your progress-2

a) Flutter is designed as an extensible, layered system (True / False)

b) The Flutter framework is relatively large

c) The widgets layer is a composition abstraction

1.10 LET US SUM UP

In this unit we have discussed what is cross platform application development and

list some popular framework for it. You have got detailed understanding of Flutter

and its key features, advantages and disadvantages of Flutter, and we also discuss

overview of Flutter architecture.

1.11 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-a See Page-3, 1-b See Page-4

1-b the latest version of Flutter is Flutter 3.24, released in 2024.

1-c True, 1-d True, 1-e False, 1-f False, 1-g True

2-a True, 2-b False, 2-c True

1.12 FURTHER READING

• https://docs.flutter.dev/

1.13 ASSIGNMENTS

1 What is flutter?

2 Explain key features of flutter.

3 Explain History of Flutter
4 Explain architecture of Flutter in details
5 List advantage, disadvantage and applications of flutte

https://docs.flutter.dev/

15

Unit-2: Introduction to Dart
Language

Unit Structure

2.1 Learning Objectives

2.2 Introduction

2.3 Why Dart for Flutter?

2.4 Getting Started with Dart

2.5 Dart Basics: Syntax and Structure

2.6 Control Flow Statements

2.7 Functions in Dart

2.8 Object-Oriented Programming (OOP) in Dart

2.9 Asynchronous Programming in Dart

2.10 Dart in Flutter

2.11 Let us sum up

2.12 Check your Progress: Possible Answers

2.13 Further Reading

2.14 Assignment

2

16

2.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Explain why Dart is used for Flutter development and how it contributes to fast

development, high performance, and flexible UI rendering.

• Run basic Dart programs using DartPad or a local setup and understand the

structure of a Dart application.

• Work with Dart’s basic syntax, including variables, types (int, double, String,

bool), and data structures like lists and maps.

• Implement control flow statements such as conditionals (if, else, switch) and

loops (for, while) to create logic in Dart programs.

• Define and call functions in Dart, including using optional and named parameters

to create more flexible and readable code.

• Create classes, objects, and constructors in Dart, and apply inheritance and

polymorphism to build reusable and organized code.

• Use Dart’s Future, async, and await to manage asynchronous operations, such

as fetching data or executing time-consuming tasks.

• Understand how Dart integrates with Flutter, including how widgets are written in

Dart, and how asynchronous programming is used in real-world Flutter apps.

2.2 INTRODUCTION

Dart is the programming language behind Flutter, designed by Google for modern

web, mobile, and desktop development. Though Flutter is Dart’s most popular use

case, Dart is a general-purpose, object-oriented language that powers Flutter’s

reactive programming model. In this chapter, we’ll explore Dart’s syntax, key

features, and why it’s essential for Flutter development. Understanding Dart will help

you write clean, efficient, and scalable Flutter applications.

2.3 WHY DART FOR FLUTTER?

Dart was chosen for Flutter for several reasons:

17

• Fast Development: Dart’s Just-in-Time (JIT) compilation supports Flutter’s hot

reload feature, which allows instant UI updates during development without

needing to restart the app.

• High Performance: Dart compiles to native ARM and x86 code for mobile

devices using Ahead-of-Time (AOT) compilation, ensuring smooth performance

on mobile and desktop platforms.

• Consistent UI Rendering: Dart enables Flutter’s unique UI rendering system,

where widgets are drawn directly to the screen rather than relying on native

components.

• Easy to Learn: Dart’s syntax is similar to languages like JavaScript, Java, and

C#, making it approachable for developers coming from other object-oriented

languages.

2.4 GETTING STARTED WITH DART

Before diving into Flutter development, let’s go over the basics of Dart. Here’s how

you can start using Dart:

1. DartPad: The easiest way to experiment with Dart is through https://dartpad.dev/

an online editor where you can write and run Dart code in your browser.

2. Installing Dart: You can install Dart SDK locally on your system if you want to

run Dart programs offline. However, if you’ve already installed Flutter, Dart comes

bundled with it, so you don’t need to install it separately.

2.5 DART BASICS: SYNTAX AND STRUCTURE

Main Function

In Dart, every program starts with the main() function. It’s the entry point for all Dart

applications, including Flutter apps.

void main() {
 print('Hello, Dart!');
}

Here, main() is the starting point, and print() is used to output text to the console.

https://dartpad.dev/

18

Variables and Data Types

Dart is a statically-typed language, meaning variables must have a specific type.

However, it also supports type inference, which means you don’t always have to

explicitly declare the type.

• Declaring Variables:

int age = 25;

String name = 'John';

bool isFlutterDev = true;

• Using var for Type Inference:

var city = 'New York'; // Dart infers that city is of type String

var number = 42; // Dart infers that number is of type int

• Null Safety: Dart enforces null safety by default, meaning variables cannot

hold null unless explicitly declared as nullable:

int? maybeAge = null; // Using ? allows the variable to hold null

Basic Data Types

Dart has several core data types:

• Numbers: int for whole numbers and double for floating-point numbers.

int quantity = 5;

double price = 9.99;

• Strings: Strings in Dart are UTF-16 encoded and can be enclosed in either

single or double quotes.

String message = 'Hello, World!';

• Booleans: bool represents true or false values.

bool isActive = true;

• Lists (Arrays): Dart uses lists to store an ordered collection of elements.

List<String> fruits = ['Apple', 'Banana', 'Mango'];

• Maps (Dictionaries): A Map holds key-value pairs.

Map<String, int> scores = {'John': 90, 'Alice': 85};

2.6 CONTROL FLOW STATEMENTS

Control flow statements in Dart include the usual suspects found in most

programming languages: conditionals and loops.

19

Conditional Statements

• If-Else Statement:

int score = 85;
if (score >= 90) {
 print('Excellent');
} else if (score >= 70) {
 print('Good');
} else {
 print('Needs Improvement');
}

• Switch Case:

var grade = 'B';
switch (grade) {
 case 'A':
 print('Excellent');
 break;
 case 'B':
 print('Good');
 break;
 default:
 print('Needs Improvement');
}

Loops

• For Loop:

for (int i = 0; i < 5; i++) {
 print(i);
}

• While Loop:

int count = 0;
while (count < 5) {
 print(count);
 count++;
}

2.7 FUNCTIONS IN DART

Functions in Dart are used to organize and reuse code. Functions can return values

or be void (returning no value).

20

Defining Functions

int add(int a, int b) {
 return a + b;
}

You can also use arrow syntax for short functions:

int multiply(int a, int b) => a * b;

Optional and Named Parameters: Dart allows functions to have optional or named

parameters:

• Optional Parameters: Parameters can be made optional by enclosing them in

square brackets [].

void greet(String name, [String title = '']) {
 print('Hello, $title $name');
}

• Named Parameters: Parameters can be made named by enclosing them in curly

braces {}. This improves code readability when calling functions with multiple

arguments.

void greet({required String firstName, String lastName = ''}) {
 print('Hello, $firstName $lastName');
}

2.8 OBJECT-ORIENTED PROGRAMMING (OOP) IN DART

Dart is an object-oriented language that supports classes, inheritance, and

polymorphism.

Defining Classes

class Person {
 String name;
 int age;

 // Constructor
 Person(this.name, this.age);

21

 void greet() {
 print('Hello, my name is $name and I am $age years old.');
 }
}

Inheritance

Dart supports class inheritance, allowing you to reuse existing code.

class Student extends Person {
 String school;

 Student(String name, int age, this.school) : super(name, age);

 @override
 void greet() {
 print('Hello, I am $name, studying at $school.');
 }
}

2.9 ASYNCHRONOUS PROGRAMMING IN DART

Flutter apps often perform tasks that take time to complete, like fetching data from a

server. Dart handles asynchronous programming using async and await.

Future

A Future represents a value that may be available in the future. You can handle it

with then() or using async and await.

Future<String> fetchData() async {
 await Future.delayed(Duration(seconds: 2));
 return 'Data fetched!';
}

void main() async {
 print('Fetching...');
 var data = await fetchData();
 print(data);
}

22

2.10 DART IN FLUTTER

When you write Flutter apps, you’re essentially writing Dart code. Key Flutter

concepts like widgets, state, and layouts are built on Dart’s object-oriented model.

Understanding Dart makes you proficient in Flutter.

1. Widgets: Flutter’s StatelessWidget and StatefulWidget classes are written in

Dart. Understanding Dart classes and inheritance will help you build custom

widgets.

2. Asynchronous Programming: Flutter often uses asynchronous functions,

especially for tasks like fetching data from APIs or interacting with databases.

3. Functional Programming: Dart supports functional programming concepts,

allowing Flutter apps to be reactive and declarative.

2.11 LET US SUM UP

In this chapter, we explored the essentials of Dart, the language behind Flutter.

Dart’s modern syntax, easy-to-learn structure, and powerful features like null safety,

object-oriented programming, and asynchronous handling make it an ideal language

for building mobile and web apps. As you dive deeper into Flutter, a solid

understanding of Dart will enable you to write clean, efficient, and scalable code.

Check Your Progress-1

1. _____is an online editor where you can write and run Dart code in your browser

 A) NotePad B) DartPad C) WordPad D) NotePad++

2. When you write Flutter apps, you’re essentially writing ______code.

 A) Java B) Cotlin C) Dart D) C

3. Dart handles asynchronous programming using async and await.

 A) async B) await C) Both A and B D) None of these

4. Dart is a general-purpose, object-oriented language that powers Flutter’s

________ programming model.

 A) Reactive B) Active C) Passive D) Responsive

23

2.12 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. B – DartPad

2. C – Dart

3. C – Both A and B

4. A - Reactive

2.13 FURTHER READING

• https://dartpad.dev/

• https://dart.dev/overview

2.14 ASSIGNMENT

1 What is dart?

2 What is DartPad?

3 Why dart is used for Flutter?

4 Explain control flow statements in Dart

5 Explain variable and data types in Dart

6 How can we define functions in Dart?

7 Explain asynchronous programming in Dart?

https://dartpad.dev/
https://dart.dev/overview

24

Unit-3: Getting Started with
Flutter

Unit Structure

3.1 Learning Objectives

3.2 Introduction

3.3 Hardware and Software requitement to install Flutter

3.4 Install the Flutter SDK

3.5 Update your Windows PATH variable

3.6 Configure Android Development

3.7 Configure your target Android device

3.8 Agree to Android licenses

3.9 Check your development setup

3.10 Creating Your First Flutter App

3.11 Writing Your First Flutter Code

3.12 Key Concepts

3.13 Let us sum up

3.14 Further Reading

3.15 Assignment

3

25

3.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Install and configure Flutter SDK on their system (Windows, macOS, or Linux)

and set up development tools like Android Studio or Visual Studio Code.

• Create a new Flutter project from the command line and understand the basic

structure of a Flutter project.

• Build and run a Flutter application on an emulator or physical device, and

understand the difference between hot reload and hot restart.

• Modify the default Flutter project to display custom content and become familiar

with writing and editing Dart code.

• Understand the role of widgets in Flutter and differentiate between stateless and

stateful widgets.

• Leverage Flutter’s hot reload feature to rapidly develop and debug Flutter

applications without losing the application state.

• Understand the key files and directories in a Flutter project, including

lib/main.dart, pubspec.yaml, and the platform-specific directories.

3.2 INTRODUCTION

Flutter has rapidly emerged as one of the most popular frameworks for building

cross-platform applications with a single codebase. Whether you're targeting

Android, iOS, web, or desktop, Flutter allows developers to build natively compiled

apps with expressive and flexible UI. Its development speed, performance, and

beautiful design make it a preferred choice for startups and large enterprises alike. In

this chapter, we will walk through the steps of getting started with Flutter, from

installation to writing your first app. We will learn Start building Flutter Android apps

on Windows

3.3 H/W AND S/W REQUIREMENT TO INSTALL FLUTTER

To install and run Flutter, your Windows environment must meet the following

hardware and software requirements.

Hardware requirements

26

Your Windows Flutter development environment must meet the following minimal

hardware requirements.

Requirement Minimum Recommended

x86_64 CPU Cores 4 8

Memory in GB 8 16

Display resolution in pixels WXGA (1366 x 768) FHD (1920 x 1080)

Free disk space in GB 11.0 60.0

Software requirements

To write and compile Flutter code for Android, you must have the following version of

Windows and the listed software packages.

Operating system

Flutter supports 64-bit version of Microsoft Windows 10 or later. These versions of

Windows should include the required Windows PowerShell 5 or later.

Development tools

Download and install the Windows version of the following packages:

• Git for Windows 2.27 or later to manage source code.

• Android Studio 2023.3.1 (Jellyfish) or later to debug and compile Java or

Kotlin code for Android. Flutter requires the full version of Android Studio.

When you run the current version of flutter doctor, it might list a different version of

one of these packages. If it does, install the version it recommends.

Configure a text editor or IDE

You can build apps with Flutter using any text editor or integrated development

environment (IDE) combined with Flutter's command-line tools.

Using an IDE with a Flutter extension or plugin provides code completion, syntax

highlighting, widget editing assists, debugging, and other features.

Popular options include:

• Visual Studio Code 1.77 or later with the Flutter extension for VS Code.

• Android Studio 2023.3.1 (Jellyfish) or later with the Flutter plugin for IntelliJ.

• IntelliJ IDEA 2023.3 or later with the Flutter plugin for IntelliJ.

The Flutter team recommends installing Visual Studio Code 1.77 or later and

the Flutter extension for VS Code. This combination simplifies installing the Flutter

SDK.

https://docs.microsoft.com/powershell/scripting/install/installing-windows-powershell

27

3.4 INSTALL THE FLUTTER SDK

Before we start building with Flutter, we need to set up the development

environment. The steps below guide you through the installation process for different

platforms: Windows, macOS, and Linux.

To install the Flutter SDK, you can use the VS Code Flutter extension or download

and install the Flutter bundle yourself.

To install Flutter, download the Flutter SDK bundle from its archive, move the bundle

to where you want it stored, then extract the SDK.

1. Download the following installation bundle to get the latest stable release of the

Flutter SDK.

https://storage.googleapis.com/flutter_infra_release/releases/stable/windows/flutt

er_windows_3.24.3-stable.zip

The Flutter SDK should download to the download folder.

2. Create a folder where you can install Flutter.

Consider creating a directory at %USERPROFILE% (C:\Users\{username})

or %LOCALAPPDATA% (C:\Users\{username}\AppData\Local).

3. Extract the file into the directory you want to store the Flutter SDK.

When finished, the Flutter SDK should be in

the C:\user\{username}\dev\flutter directory.

3.5 UPDATE YOUR WINDOWS PATH VARIABLE

To run Flutter commands in PowerShell, add Flutter to the PATH environment

variable. This section presumes that you installed the Flutter SDK

in %USERPROFILE%\dev\flutter.

1. Press Windows + Pause.

If your keyboard lacks a Pause key, try Windows + Fn + B.

The System > About dialog displays.

2. Click Advanced System Settings > Advanced > Environment Variables...

https://storage.googleapis.com/flutter_infra_release/releases/stable/windows/flutter_windows_3.24.3-stable.zip
https://storage.googleapis.com/flutter_infra_release/releases/stable/windows/flutter_windows_3.24.3-stable.zip

28

The Environment Variables dialog displays.

3. In the User variables for (username) section, look for the Path entry.

1. If the entry exists, double-click on it.

The Edit Environment Variable dialog displays.

1. Double-click in an empty row.

2. Type %USERPROFILE%\dev\flutter\bin.

3. Click the %USERPROFILE%\dev\flutter\bin entry.

4. Click Move Up until the Flutter entry sits at the top of the list.

5. Click OK three times.

2. If the entry doesn't exist, click New....

The Edit Environment Variable dialog displays.

1. In the Variable Name box, type Path.

2. In the Variable Value box, type %USERPROFILE%\dev\flutter\bin

3. Click OK three times.

4. To enable these changes, close and reopen any existing command prompts and

PowerShell instances.

3.6 CONFIGURE ANDROID DEVELOPMENT

1. Launch Android Studio.

The Welcome to Android Studio dialog displays.

2. Follow the Android Studio Setup Wizard.

3. Install the following components:

o Android SDK Platform, API 35.0.1

o Android SDK Command-line Tools

o Android SDK Build-Tools

o Android SDK Platform-Tools

o Android Emulator

3.7 CONFIGURE YOUR TARGET ANDROID DEVICE

Set up the Android emulator

To configure your Flutter app to run in an Android emulator, follow these steps to

create and select an emulator.

29

1. Enable VM acceleration on your development computer.

2. Start Android Studio.

3. Go to the Settings dialog to view the SDK Manager.

1. If you have a project open, go to Tools > Device Manager.

2. If the Welcome to Android Studio dialog displays, click the More

Options icon that follows the Open button and click Device

Manager from the dropdown menu.

4. Click Virtual.

5. Click Create Device.

The Virtual Device Configuration dialog displays.

6. Select either Phone or Tablet under Category.

7. Select a device definition. You can browse or search for the device.

8. Click Next.

9. Click x86 Images.

10. Click one system image for the Android version you want to emulate.

1. If the desired image has a Download icon to the right of the Release

Name, click it.

The SDK Quickfix Installation dialog displays with a completion

meter.

2. When the download completes, click Finish.

11. Click Next.

The Virtual Device Configuration displays its Verify Configuration step.

12. To rename the Android Virtual Device (AVD), change the value in the AVD

Name box.

13. Click Show Advanced Settings and scroll to Emulated Performance.

14. From the Graphics dropdown menu, select Hardware - GLES 2.0.

This enables hardware acceleration and improves rendering performance.

15. Verify your AVD configuration. If it is correct, click Finish.

16. In the Device Manager dialog, click the Run icon to the right of your desired

AVD. The emulator starts up and displays the default canvas for your selected

Android OS version and device.

30

3.8 AGREE TO ANDROID LICENSES

Before you can use Flutter and after you install all prerequisites, agree to the

licenses of the Android SDK platform.

1. Open an elevated console window.

2. Run the following command to enable signing licenses.

C:> flutter doctor --android-licenses

If you accepted the Android Studio licenses at another time, this command

returns:

You can skip the next step.

3. Before agreeing to the terms of each license, read each with care.

3.9 CHECK YOUR DEVELOPMENT SETUP

The flutter doctor command validates that all components of a complete Flutter

development environment for Windows.

1. Open PowerShell.

2. To verify your installation of all the components, run the following command.

PS C:> flutter doctor

As you chose to develop for Android, you do not need all components. If you

followed this guide, the result of your command should resemble:

31

Troubleshoot Flutter doctor issues

When the flutter doctor command returns an error, it could be for Flutter, VS Code,

Android Studio, the connected device, or network resources.

If the flutter doctor command returns an error for any of these components, run it

again with the verbose flag.

PS C:> flutter doctor -v

Check the output for other software you might need to install or further tasks to

perform. If you change the configuration of your Flutter SDK or its related

components, run flutter doctor again to verify the installation.

Congratulations. Having installed all prerequisites and the Flutter SDK, you can start

developing Flutter apps for Android on Windows. Now you can start developing

Android on Windows apps with Flutter

3.10 CREATING YOUR FIRST FLUTTER APP

Now that the environment is set up, let’s create and run your first Flutter app.

Create a New Flutter Project

1. Open your terminal and navigate to the directory where you want to create your

project.

2. Run the flutter create my_first_app command to create a new Flutter project

as shown below:

32

This command will create a new Flutter project with the necessary files and

directories.

3. Navigate to your project directory:

cd my_first_app

Run the App

1. Run the following command to launch the app on the available emulator or

device:

If you have an Android or iOS emulator set up, you should see the default Flutter app

running on your device. The app will display a counter that increments each time you

press the "plus" button.

33

Understanding the Project Structure

• lib/main.dart: This is the main entry point of your Flutter app. The main.dart file

contains the main() function, which is the starting point of any Dart application. By

default, it also contains a StatefulWidget that displays a simple counter app.

• pubspec.yaml: This file is the configuration file for your Flutter project. It includes

information about your app’s dependencies, such as plugins, fonts, and assets.

• android/ and ios/ folders: These folders contain platform-specific code for

Android and iOS. As a Flutter developer, you typically won’t need to modify these

files unless you need custom native functionality.

3.11 WRITING YOUR FIRST FLUTTER CODE

Let’s modify the default Flutter app to display a custom message. Follow the steps

below to change the basic counter app into a simple "Hello, Flutter!" app.

1. Open the lib/main.dart file in your IDE.

2. Replace the default code with the following:

import 'package:flutter/material.dart';

void main() {
 runApp(MyApp());
}

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 home: Scaffold(
 appBar: AppBar(
 title: Text('Hello Flutter'),
),
 body: Center(
 child: Text(
 'Welcome to Flutter!',
 style: TextStyle(fontSize: 24),
),
),
),
);
 }
}

34

Save the file, and if you’re using hot reload, you should see the changes applied

immediately. The app will now display a "Welcome to Flutter!" message at the center

of the screen.

Now you should understand that the lib/main.dart is the main entry point of your

Flutter app and it contains the main() function, which is the starting point of any Dart

application. By default, it also contains a StatefulWidget that displays a simple

counter app that can be modified as per requirement.

3.12 KEY CONCEPTS

Widgets: In Flutter, everything is a widget. Widgets are the building blocks of the UI.

There are two types of widgets in Flutter:

• Stateless Widgets: Widgets that do not change over time, such as static text or

icons.

• Stateful Widgets: Widgets that can change based on user interaction or other

factors, like forms or dynamic content.

35

Hot Reload vs. Hot Restart

• Hot Reload: Allows you to instantly view the changes you’ve made in the app

without losing the current app state.

• Hot Restart: Completely rebuilds the app and clears the app’s state.

3.13 LET US SUM UP

In this chapter, we covered the basics of getting started with Flutter. You learned

how to install Flutter, create your first project, and run a simple app. We also touched

on the project structure and how to write basic Flutter code. In the upcoming

chapters, we will dive deeper into Flutter’s widgets, navigation, state management,

and more.

3.14 FURTHER READING

• https://docs.flutter.dev/get-started/install/windows/mobile

3.15 ASSIGNMENT

1. Write steps to install flutter?

2. Write hardware and software requirement to install Flutter

3. Define: Widget, Stateful Widgets and Stateless Widgets

4. What is difference between Hot Reload and Hot Restart?

5. Explain Flutter project structure

https://docs.flutter.dev/get-started/install/windows/mobile

36

Block-2
Flutter Basics

37

Unit-4: Understanding Flutter
Widgets

Unit Structure

4.1 Learning Objectives

4.2 Introduction

4.3 What are widgets?

4.4 Types of Widgets

4.5 Common Flutter Widgets

4.6 Widget Composition and Nesting

4.7 Layout in Flutter

4.8 Building Custom Widgets

4.9 Let us sum up

4.10 Check your Progress: Possible Answers

4.11 Further Reading

4.12 Assignment

4

38

4.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Explain what widgets are and how they form the core of Flutter’s UI design

system.

• Identify the key differences between stateless and stateful widgets and

understand when to use each.

• Utilize essential widgets like Text, Container, Row, Column, Image, and Button to

build simple and complex UI elements.

• Combine and nest multiple widgets within each other to create structured, layered

user interfaces.

• Use layout widgets such as Align, Padding, Expanded, and Flexible to control the

positioning and spacing of UI elements.

• Create custom stateless and stateful widgets to encapsulate reusable

functionality and improve code organization.

• Understand the hierarchy of the widget tree and how Flutter uses it to render the

UI.

• Manage state within stateful widgets to create responsive and dynamic user

interfaces that react to user interaction.

4.2 INTRODUCTION

Flutter’s core building blocks are widgets. In fact, everything in Flutter is a widget—

from layout elements like buttons and text to the structure and behavior of your app.

Widgets define not only the UI but also how it reacts to user interactions and

changes in state. This chapter introduces the concept of widgets in Flutter, explains

the different types of widgets, and demonstrates how to compose them to build

beautiful, responsive UIs.

4.3 WHAT ARE WIDGETS?

Widgets are the fundamental building blocks in Flutter. Everything you see on the

screen, such as text, images, buttons, and layouts, is a widget. Even invisible

elements that control layout, such as padding and alignment, are widgets. Flutter’s

39

widget system is highly flexible, allowing developers to create complex UIs by

combining simple widgets in different ways.

The minimal Flutter app simply calls the runApp() function with a widget:

import 'package:flutter/material.dart';

void main() {
 runApp(
 const Center(
 child: Text(
 'Hello, world!',
 textDirection: TextDirection.ltr,
),
),
);
}

Figute 4.1: Simple Widget

The runApp() function takes the given Widget and makes it the root of the widget

tree. In this example, the widget tree consists of two widgets, the Center widget and

its child, the Text widget. The framework forces the root widget to cover the screen,

which means the text "Hello, world" ends up centered on screen. The text direction

needs to be specified in this instance; when the MaterialApp widget is used, this is

taken care of for you, as demonstrated later.

When writing an app, you'll commonly author new widgets that are subclasses of

either StatelessWidget or StatefulWidget, depending on whether your widget

manages any state. A widget's main job is to implement a build() function, which

describes the widget in terms of other, lower-level widgets. The framework builds

those widgets in turn until the process bottoms out in widgets that represent the

underlying RenderObject, which computes and describes the geometry of the

widget.

Widget Tree

40

Every Flutter app consists of a widget tree. The root of this tree is the runApp()

function, which takes the widget that forms the app's root and builds a tree of nested

widgets beneath it.

void main() {

 runApp(MyApp());

}

class MyApp extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 return MaterialApp(

 home: Scaffold(

 appBar: AppBar(

 title: Text('Flutter Widgets'),

),

 body: Center(

 child: Text('Hello, Flutter!'),

),

),

);

 }

}

Figure 4.2: Widget Tree

In this example, the widget tree consists of a MaterialApp, a Scaffold, an AppBar,

and a Text widget. Each widget in the tree is responsible for rendering a part of the

UI.

4.4 TYPES OF WIDGETS

Widgets in Flutter can be categorized into two main types: Stateless Widgets and

Stateful Widgets.

41

Stateless Widgets: A StatelessWidget is a widget that does not change its state

during its lifetime. It renders static content that remains the same unless the entire

widget is rebuilt.

Example:

import 'package:flutter/material.dart';
void main() {
 runApp(const MyApp());
}

class MyApp extends StatelessWidget {
 const MyApp({super.key});

 @override
 Widget build(BuildContext context) {
 return const MaterialApp(
 home: Scaffold(
 body: MyStatelessWidget(),
),
);
 }
}
class MyStatelessWidget extends
StatelessWidget {
 const MyStatelessWidget({super.key});

 @override
 Widget build(BuildContext context) {
 return Center(child: const Text('I am a
Stateless Widget'));
 }
}

Figure 4.3 StatelessWidget

Stateless widgets are ideal for displaying static UI components like labels, icons, and

buttons that don’t change dynamically as shown in figure 4.3.

Stateful Widgets: A StatefulWidget is a widget that can change its state during its

lifetime. The state of the widget can be updated based on user interaction or other

events.

Example:

import 'package:flutter/material.dart';

void main() {
 runApp(

42

 const MaterialApp(
 home: Scaffold(
 body: Center(
 child: MyStatefulWidget(),
),
),
),
);
}

class MyStatefulWidget extends StatefulWidget {

 @override

 _MyStatefulWidgetState createState() => _MyStatefulWidgetState();

}

class _MyStatefulWidgetState extends State<MyStatefulWidget> {

 int _counter = 0;

 void _incrementCounter() {
 setState(() {
 _counter++;
 });
 }
 @override
 Widget build(BuildContext context) {
 return Column(
mainAxisAlignment: MainAxisAlignment.center,
 children: [
 Text('Counter: $_counter'),
 ElevatedButton(
 onPressed: _incrementCounter,
 child: const Text('Increment'),
),
],
);
 }
}

Figute 4.4 Stateful Widgets

43

Here, MyStatefulWidget has a counter that changes when the button is pressed. The

setState() method is used to notify Flutter that the state has changed and the UI

should be updated.

4.5 COMMON FLUTTER WIDGETS

Common Flutter Widgets

Flutter provides a wide variety of widgets to build both simple and complex user

interfaces. Below are some of the most commonly used widgets:

Text Widget

The Text widget is used to display a string of text in the app.

Text('Hello, Flutter!',
 style: TextStyle(fontSize: 24, fontWeight: FontWeight.bold),
);

Container Widget
The Container widget is a flexible widget that can be used to add padding, margins,
borders, or backgrounds to child widgets.

Container(
 padding: EdgeInsets.all(16.0),
 margin: EdgeInsets.all(8.0),
 decoration: BoxDecoration(
 color: Colors.blue,
 borderRadius: BorderRadius.circular(10),
),
 child: Text('I am inside a container'),
);

Row and Column Widgets
The Row and Column widgets allow you to arrange child widgets in a horizontal or
vertical direction, respectively.

Row:
Row(
 mainAxisAlignment: MainAxisAlignment.center,
 children: [
 Icon(Icons.star),
 Text('Starred'),
],
);

44

Column:
Column(
 crossAxisAlignment: CrossAxisAlignment.start,
 children: [
 Text('Item 1'),
 Text('Item 2'),
 Text('Item 3'),
],
);

Image Widget

The Image widget is used to display images in your Flutter app. You can load

images from assets, network, or files.

Image.network('https://example.com/image.png');

Button Widgets

Flutter offers several button widgets, such as ElevatedButton, TextButton, and

IconButton.

Example of an ElevatedButton:

ElevatedButton(
 onPressed: () {
 print('Button Pressed');
 },
 child: Text('Press Me'),
);

ListView Widget: The ListView widget is used to display a scrollable list of items.

ListView(
 children: [
 ListTile(title: Text('Item 1')),
 ListTile(title: Text('Item 2')),
 ListTile(title: Text('Item 3')),
],
);

4.6 WIDGET COMPOSITION AND NESTING

One of Flutter's greatest strengths is the ability to compose widgets by nesting them

inside one another. This allows you to create complex UIs from smaller, reusable

components.

45

For example, a button with a label inside a container:

Container(
 padding: EdgeInsets.all(16),
 decoration: BoxDecoration(
 color: Colors.blueAccent,
 borderRadius: BorderRadius.circular(8),
),
 child: ElevatedButton(
 onPressed: () {},
 child: Text('Click Me'),
),
);

In this case, we nest an ElevatedButton inside a Container, giving it padding and

rounded corners.

4.7 LAYOUT IN FLUTTER

Flutter provides a flexible layout system that allows you to position widgets within

your app in various ways.

Alignment and Padding

Align Widget: Controls the alignment of a widget within its parent.

Align(
 alignment: Alignment.center,
 child: Text('Centered Text'),
);

Padding Widget: Adds space around a widget.

Padding(
 padding: EdgeInsets.all(16.0),
 child: Text('Text with Padding'),
);

Expanded and Flexible Widgets

The Expanded and Flexible widgets are used to control how widgets grow and shrink

inside a Row or Column.

46

Expanded: Expands a child widget to fill the available space.

Row(
 children: [
 Expanded(child: Text('Item 1')),
 Expanded(child: Text('Item 2')),
],
);

Flexible: Flexibly sizes a widget, but allows it to take up only as much space as

needed.

Flexible (
 child: Text ('Flexible Widget'),
);

4.8 BUILDING CUSTOM WIDGETS

One of the key features of Flutter is the ability to create custom widgets. Custom

widgets allow you to encapsulate code that is reused across the app, improving

maintainability and readability.In section 4.3 we have already learnt how to create a

Custom Stateless Widget and a Custom Stateful Widget

Check Your Progress-1

a) One of Flutter's greatest strengths is the ability to compose widgets by nesting

them inside one another. (True/False)

b) Widgets in Flutter can be categorized into _________main types

c) Views are the fundamental building blocks in Flutter. (True/False)

d) The _______ widget is a flexible widget that can be used to add padding,

margins, borders, or backgrounds to child widgets.

e) The minimal Flutter app simply calls the runApp() function with a widget

(True/False)

4.9 LET US SUM UP

In this chapter, we covered the basics of getting started with Flutter. You learned

how to install Flutter, create your first project, and run a simple app. We also touched

47

on the project structure and how to write basic Flutter code. In the upcoming

chapters, we will dive deeper into Flutter’s widgets, navigation, state management,

and more.

4.10 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-a) True 1-b) Two 1-c) Fakse 1-d) Container 1-e) True

4.11 FURTHER READING

• https://docs.flutter.dev/ui

• https://docs.flutter.dev/ui/widgets

4.12 ASSIGNMENT

1. What is layout?

2. Explain alignment and padding

3. What is widget composition and nesting?

4. Explain common flutter widgets with code snippet and use.

https://docs.flutter.dev/ui
https://docs.flutter.dev/ui/widgets

48

Unit-5: Building User Interfaces
with Flutter

Unit Structure

5.1 Learning Objectives

5.2 Introduction

5.3 What Makes Flutter a Strong Choice for UI Development?

5.4 Understanding the Flutter UI Structure

5.5 Key Layout Concepts

5.6 Responsive Layouts

5.7 Working with Material Design and Cupertino Widgets

5.8 Handling User Input with Forms and Validation

5.9 Customizing Widgets and Themes

5.10 Animations and Transitions

5.11 Let us sum up

5.12 Check your Progress: Possible Answers

5.13 Further Reading

5.14 Assignment

5

49

5.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Comprehend the fundamental principles of Flutter’s widget-based architecture

and how it underpins the construction of user interfaces.

• Identify and implement the appropriate use of stateless and stateful widgets for

different UI components and app functionalities.

• Effectively use common Flutter widgets such as Container, Text, Row, Column,

ListView, and Stack to build various UI elements.

• Use layout widgets like Row, Column, Expanded, Flexible, and Stack to create

responsive and adaptive UI designs.

• Build UIs that respond dynamically to different screen sizes, orientations, and

constraints using MediaQuery, LayoutBuilder, and OrientationBuilder.

• Apply custom themes using ThemeData and customize individual widgets to

create consistent, attractive, and branded user interfaces.

• Understand how to manage UI state in Flutter applications, ensuring that the UI

reacts to user interactions and changes.

• Add both implicit and explicit animations to Flutter applications, using widgets like

AnimatedContainer and AnimationController to enhance user experience.

• Design and implement reusable custom widgets to simplify UI development and

maintain clean code architecture.

• Understand best practices for ensuring that Flutter apps run smoothly and

efficiently, avoiding unnecessary rebuilds and performance bottlenecks in the UI.

5.2 INTRODUCTION

In the fast-paced world of app development, creating efficient, visually appealing,

and user-friendly interfaces is crucial for user engagement and retention. Flutter, an

open-source UI software development kit (SDK) developed by Google, has

revolutionized the way developers build natively compiled applications for mobile,

web, and desktop from a single codebase. This chapter focuses on the practical

aspects of building user interfaces (UI) using Flutter, providing insights into its

flexible and powerful tools for UI creation.

50

We will dive deep into the fundamental components of Flutter’s UI toolkit, including

widgets, layouts, themes, and state management. By the end of this chapter, you

should have a strong foundation for designing responsive, beautiful, and functional

interfaces using Flutter.

5.3 WHAT MAKES FLUTTER A STRONG CHOICE FOR UI
DEVELOPMENT?

Flutter has grown in popularity because of its unique features that simplify UI

development. Here’s why Flutter stands out:

• Single Codebase for Multiple Platforms: With Flutter, developers can create

apps for Android, iOS, Web, and even desktop using a single codebase.

• Hot Reload: One of Flutter's most loved features, it allows developers to instantly

see the changes they make to the UI without restarting the app. This dramatically

reduces development time.

• Customizable Widgets: Flutter provides a vast collection of pre-built widgets

that can be customized to build native-looking UIs for both iOS and Android.

• Performance: Since Flutter compiles to native ARM code, its performance is

comparable to native applications.

• Expressive and Flexible UI: Flutter’s widget-based architecture and layered

design enable fine-grained control over every pixel, making it possible to create

highly interactive and visually impressive UIs.

5.4 UNDERSTANDING THE FLUTTER UI STRUCTURE

In Flutter, everything is a widget. From the smallest UI components like buttons and

text to more complex components like layouts and navigation controls, widgets form

the building blocks of every Flutter application. Widgets in Flutter are classified into

two categories: Stateless and Stateful.

Let’s build a simple UI with a text widget, a button, and a container to demonstrate

basic layout widgets.

51

import 'package:flutter/material.dart';

void main() {
 runApp(const MyHomePage());
}

class MyHomePage extends StatelessWidget {
 const MyHomePage({super.key});

 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 home: Scaffold(
 appBar: AppBar(
 title: const Text('Flutter UI Demo'),
),
 body: Center(
 child: Column(
 mainAxisAlignment: MainAxisAlignment.center,
 children: <Widget>[
 const Text(
 'Welcome to Flutter!',
 style: TextStyle(fontSize: 24),
),
 const SizedBox(height: 20),
 Container(
 height: 100,
 width: 100,
 color: Colors.blue,
 child: const Center(child: Text('Container')),
),
 const SizedBox(height: 20),
 ElevatedButton(
 onPressed: () {},
 child: const Text('Click Me'),
),
],
),
),
));
 }
}

In this example:

• Scaffold provides the basic layout structure including an app bar.

• Column vertically arranges the Text, Container, and Button.

• SizedBox is used to add spacing between widgets.

52

5.5 KEY LAYOUT CONCEPTS

The core of Flutter's layout mechanism is widgets. In Flutter, almost everything is a

widget—even layout models are widgets. The images, icons, and text that you see in

a Flutter app are all widgets. But things you don't see are also widgets, such as the

rows, columns, and grids that arrange, constrain, and align the visible widgets.

You create a layout by composing widgets to build more complex widgets. For

example, the below screenshot below shows 3 icons with a label under each one:

The below screenshot displays the visual layout, showing a row of 3 columns where

each column contains an icon and a label.

Here's a diagram of the widget tree for this UI:

53

Most of this should look as you might expect, but you might be wondering about the

containers (shown in pink). Container is a widget class that allows you to customize

its child widget. Use a Container when you want to add padding, margins, borders,

or background color, to name some of its capabilities.

In this example, each Text widget is placed in a Container to add margins. The

entire Row is also placed in a Container to add padding around the row.

The rest of the UI in this example is controlled by properties. Set an Icon's color

using its color property. Use the Text.style property to set the font, its color, weight,

and so on. Columns and rows have properties that allow you to specify how their

children are aligned vertically or horizontally, and how much space the children

should occupy.

Flutter uses a flexible layout system that allows developers to create responsive UIs.

Let’s take a closer look at some of the key layout concepts.

MainAxisAlignment and CrossAxisAlignment

Both Row and Column have properties called mainAxisAlignment and

crossAxisAlignment that control how their children are aligned within the available

space.

• MainAxisAlignment aligns widgets along the main axis (horizontal for Row and

vertical for Column).

• CrossAxisAlignment aligns widgets along the cross-axis (vertical for Row and

horizontal for Column).

Row(
 mainAxisAlignment: MainAxisAlignment.center,
 crossAxisAlignment: CrossAxisAlignment.start,
 children: <Widget>[
 Icon(Icons.star),
 Icon(Icons.favorite),
 Icon(Icons.share),
],
)

https://api.flutter.dev/flutter/material/Icons-class.html

54

In the above example, the icons are aligned horizontally in the center, and the cross-

axis alignment is set to start, meaning the icons will be aligned at the top edge of the

row.

Flexible and Expanded

When building UIs that need to stretch or fill available space, Flexible and Expanded

widgets come in handy.

• Expanded: Forces a child widget to fill the available space.

• Flexible: Allows the child widget to take up a flexible amount of space within a

Row or Column.

Row(
 children: <Widget>[
 Flexible(
 child: Container(color: Colors.red, height: 100),
),
 Flexible(
 child: Container(color: Colors.green, height: 100),
),
 Expanded(
 child: Container(color: Colors.blue, height: 100),
),
],
)

5.6 RESPONSIVE LAYOUTS

One of Flutter's primary goals is to create a framework that allows you to develop

apps from a single codebase that look and feel great on any platform.

This means that your app might appear on screens of many different sizes, from a

watch, to a foldable phone with two screens, to a high-definition monitor. And your

input device might be a physical or virtual keyboard, a mouse, a touchscreen, or any

number of other devices.

Two terms that describe these design concepts are adaptive and responsive. Ideally,

you'd want your app to be both but what, exactly, does this mean?

55

What is responsive vs adaptive?

An easy way to think about it is that responsive design is about fitting the UI into the

space and adaptive design is about the UI being usable in the space.

So, a responsive app adjusts the placement of design elements to fit the available

space. And an adaptive app selects the appropriate layout and input devices to be

usable in the available space. For example, should a tablet UI use bottom navigation

or side-panel navigation?

Responsive design is essential for ensuring that your app looks and functions well on

various screen sizes and device types. Flutter provides several powerful layout

widgets that allow developers to create flexible and adaptive user interfaces.

Building UIs that look good across different screen sizes is essential. Flutter offers

several approaches to build responsive designs.

Container: The Container widget is one of the most commonly used layout elements

in Flutter. It allows you to wrap other widgets and control their size, padding,

margins, alignment, and background decoration.

Container(

56

 height: 200,
 width: 200,
 padding: EdgeInsets.all(10),
 margin: EdgeInsets.all(10),
 decoration: BoxDecoration(
 color: Colors.blue,
 borderRadius: BorderRadius.circular(10),
),
 child: Text('I am inside a container'),
);

Stack: The Stack widget allows for layering of widgets on top of each other. This is

useful for building more complex layouts where elements need to overlap, such as

floating buttons or notifications.

Stack(
 children: [
 Container(
 height: 200,
 width: 200,
 color: Colors.red,
),
 Positioned(
 top: 50,
 left: 50,
 child: Container(
 height: 100,
 width: 100,
 color: Colors.green,
),
),
],
);

Flex and Expanded: Flex widgets, such as Row and Column, allow you to arrange

children horizontally or vertically. The Expanded and Flexible widgets inside a Flex

parent allow child widgets to grow and fill available space proportionally.

Row(
 children: [
 Expanded(child: Container(color: Colors.blue, height: 100)),
 Expanded(child: Container(color: Colors.red, height: 100)),
 Expanded(child: Container(color: Colors.green, height: 100)),
],
);

57

MediaQuery: MediaQuery provides information about the size of the screen and its

characteristics. You can use it to create adaptive layouts that respond to changes in

screen size.

@override
Widget build(BuildContext context) {
 var screenSize = MediaQuery.of(context).size;

 return Container(
 width: screenSize.width * 0.5,
 height: screenSize.height * 0.3,
 color: Colors.blue,
 child: Center(child: Text('Responsive UI')),
);
}

In this example, the container's width and height adjust based on the screen size.

LayoutBuilder

LayoutBuilder can be used to create layouts that respond to constraints like available

width and height. It gives you control over how to render widgets in different screen

sizes or orientations.

@override
Widget build(BuildContext context) {
 return LayoutBuilder(
 builder: (context, constraints) {
 if (constraints.maxWidth < 600) {
 return Text('Small Screen Layout');

 } else {
 return Text('Large Screen Layout');
 }
 },
);
}

OrientationBuilder

OrientationBuilder allows you to modify the UI based on the device’s orientation

(portrait or landscape).

@override
Widget build(BuildContext context) {
 return OrientationBuilder(
 builder: (context, orientation) {

58

 return GridView.count(
 crossAxisCount: orientation == Orientation.portrait ? 2 : 4,
 children: List.generate(10, (index) {
 return Container(
 color: Colors.blue,
 margin: EdgeInsets.all(4),
);
 }),
);
 },
);
}

5.7 WORKING WITH MATERIAL DESIGN AND CUPERTINO
WIDGETS

Flutter provides two primary design libraries for building beautiful UIs: Material

Design and Cupertino.

Material Design Widgets

Material Design is a design language developed by Google and is used in most

Android apps. Flutter provides a wide range of Material Design widgets out of the

box.

• Scaffold: Provides the basic structure for a Material Design layout, including an

app bar, body, floating action buttons, and more.

• Material Components: Flutter includes Material Design widgets like TextField,

ElevatedButton, SnackBar, and Drawer, which help create consistent, functional,

and visually appealing apps.

• Themes: Flutter’s ThemeData class allows you to customize the app’s visual

design, including colors, typography, and shape. You can apply a global theme or

modify individual components to adhere to your app’s branding.

Cupertino Widgets

Cupertino widgets are used to create iOS-style interfaces. They follow the iOS

design guidelines and are ideal for apps targeting iOS or that want to mimic the

native iOS look.

59

• CupertinoApp: The iOS equivalent of MaterialApp, this is used to set up the

overall theme and layout for an iOS-styled app.

• Cupertino Components: These widgets include CupertinoButton,

CupertinoTextField, CupertinoSlider, and many more, giving you access to

iOS-native UI components.

5.8 HANDLING USER INPUT WITH FORMS AND
VALIDATION

Forms are essential for collecting user data in many apps, such as signing up,

logging in, or submitting feedback. Flutter makes it easy to handle forms and validate

user input.

Form and TextFormField Widgets

Flutter provides the Form and TextFormField widgets to create forms with multiple

input fields. A Form widget serves as a container for form fields, while TextFormField

is used for individual text inputs.

Form(
 key: _formKey,
 child: Column(
 children: <Widget>[
 TextFormField(
 decoration: InputDecoration(labelText: 'Enter your name'),
 validator: (value) {
 if (value == null || value.isEmpty) {
 return 'Please enter some text';
 }
 return null;
 },
),
 TextFormField(
 decoration: InputDecoration(labelText: 'Enter your email'),
 validator: (value) {
 if (value == null || !value.contains('@')) {
 return 'Please enter a valid email';
 }
 return null;
 },
),
 ElevatedButton(
 onPressed: () {

60

 if (_formKey.currentState!.validate()) {
 // Process data
 }
 },
 child: Text('Submit'),
),
],
),
);

Form Validation

Validation in Flutter forms ensures that users input correct information. You can

validate fields using the validator function, which checks the value of the input and

returns an error message if the validation fails. In the example above, the validator

checks if the field is empty or if the email format is incorrect. If validation fails, the

TextFormField will display an error message below the field.

Handling Form Submission

You can handle form submission by checking whether all fields pass validation

before processing the data:

final GlobalKey<FormState> _formKey = GlobalKey<FormState>();

if (_formKey.currentState!.validate()) {
 // All fields are valid, proceed with form submission
}

You can also reset the form using:

_formKey.currentState!.reset();

Input Decorators and UI Customization

Customize the appearance of form fields using InputDecoration. This allows you to

add labels, hints, icons, and error messages for better user interaction and a cleaner

UI design.

TextFormField(
 decoration: InputDecoration(
 labelText: 'Enter your email',
 hintText: 'example@domain.com',
 icon: Icon(Icons.email),
),
);

61

5.9 CUSTOMIZING WIDGETS AND THEMES

One of Flutter's most powerful features is the ability to customize every aspect of its

UI components. You can easily apply custom themes, colors, and styles to ensure

that the app has a consistent look and feel.

Custom Themes

Flutter’s ThemeData allows you to apply a consistent theme across your app, such

as colors, font styles, and more.

MaterialApp(
 theme: ThemeData(
 primaryColor: Colors.blue,
 accentColor: Colors.orange,
 textTheme: TextTheme(
 headline1: TextStyle(fontSize: 72.0, fontWeight: FontWeight.bold),
 bodyText1: TextStyle(fontSize: 14.0, fontFamily: 'Hind'),
),
),
 home: MyHomePage(),
);

Custom Widgets

Creating your own custom widgets in Flutter is easy. You can create a reusable

component by extending the StatelessWidget or StatefulWidget classes.

class CustomButton extends StatelessWidget {
 final String label;
 final VoidCallback onPressed;

 CustomButton({required this.label, required this.onPressed});

 @override
 Widget build(BuildContext context) {
 return ElevatedButton(
 onPressed: onPressed,
 child: Text(label),
);
 }
}

You can now use this custom button anywhere in your app:

CustomButton(

62

 label: 'Press Me',
 onPressed: () {
 print('Button Pressed!');
 },
)

5.10 ANIMATIONS AND TRANSITIONS

Adding animations can enhance the user experience by providing smooth transitions

and feedback for user actions. Flutter provides several ways to add animations to

your UI.

Implicit Animations

Flutter offers a set of widgets for simple, implicit animations, like AnimatedContainer

or AnimatedOpacity. These widgets animate between property changes

automatically.

import 'package:flutter/material.dart';

void main() {
 runApp(
 const MaterialApp(
 home: AnimatedBox(),
),
);
}

class AnimatedBox extends StatefulWidget {
 const AnimatedBox({super.key});

 @override
 _AnimatedBoxState createState() => _AnimatedBoxState();
}

class _AnimatedBoxState extends State<AnimatedBox> {
 double _size = 100;

 void _toggleSize() {
 setState(() {
 _size = _size == 100 ? 200 : 100;
 });
 }

 @override
 Widget build(BuildContext context) {
 return AnimatedContainer(

63

 width: _size,
 height: _size,
 color: Colors.blue,
 duration: const Duration(seconds: 1),
 curve: Curves.easeInOut,
 child: Center(
 child: ElevatedButton(
 onPressed: _toggleSize, child: const Text('Animate'))),
);
 }
}

Explicit Animations

For more control, you can use Flutter’s AnimationController and Tween classes to

create explicit animations.

Let’s look at a simple example where a square grows in size over 2 seconds:

import 'package:flutter/material.dart';

void main() {
 runApp(
 const MaterialApp(
 home: ExplicitAnimationExample(),

64

),
);
}

class ExplicitAnimationExample extends StatefulWidget {
 const ExplicitAnimationExample({super.key});

 @override
 _ExplicitAnimationExampleState createState() =>
 _ExplicitAnimationExampleState();
}

class _ExplicitAnimationExampleState extends State<ExplicitAnimationExample>
 with SingleTickerProviderStateMixin {
 late AnimationController _controller;
 late Animation<double> _animation;

 @override
 void initState() {
 super.initState();

 // Step 1: Initialize the AnimationController
 _controller = AnimationController(
 duration: const Duration(seconds: 2),
 vsync: this,
);

 // Step 2: Define the Tween and connect it with the controller
 _animation = Tween<double>(begin: 0, end: 300).animate(_controller)
 ..addListener(() {
 // Step 3: Rebuild the widget on every tick
 setState(() {});
 });

 // Step 4: Start the animation
 _controller.forward();
 }

 @override
 void dispose() {
 // Dispose of the controller when the widget is removed
 _controller.dispose();
 super.dispose();
 }

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: const Text("Explicit Animation Example")),
 body: Center(

65

 child: Container(
 width: _animation.value, // The animated size value
 height: _animation.value, // The animated size value
 color: Colors.blue,
),
),
);
 }
}

Key Points in the Example:

• AnimationController: Controls the

duration and state of the animation.

• Tween: Interpolates values between

0 and 300 for the size of the

container.

• Listener: Updates the UI on each

frame of the animation using

setState().

• Dispose: The controller is disposed

of when the widget is removed from

the widget tree to free resources.

Check Your Progress-1

a) MainAxisAlignment aligns widgets along the main axis (vertical for Row and

horizontal for Column) True / False

b) CrossAxisAlignment aligns widgets along the cross-axis. (horizontal for Row and

vertical for Column). True / False

c) Flutter’s ThemeData allows you to apply a consistent theme across your app,

such as colors, font styles, and more. True / False

d) You can use MediaQuery to create adaptive layouts that respond to changes in screen

size.

e) Flutter’s ThemeData allows you to apply a consistent theme across your app, such as

colors, font styles, and more.

66

5.11 LET US SUM UP

Flutter offers a vast and flexible toolkit for building rich user interfaces that are

responsive, performant, and visually appealing. With its widget-based architecture,

you can create highly customizable components, manage state effectively, and add

animations that enhance the user experience. Whether you’re developing for mobile,

web, or desktop, Flutter empowers you to create UIs that look and feel native to each

platform.

In this chapter, we’ve covered the fundamentals of building UIs in Flutter, from basic

widgets and layouts to responsive designs and animations. By mastering these tools

and techniques, you can craft beautiful, responsive, and engaging applications that

will captivate users across devices and platforms.

5.12 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-a) False 1-b) False 1-c) True 1-d) True 1-e) True

5.13 FURTHER READING

1. https://docs.flutter.dev/ui/layout

2. https://docs.flutter.dev/ui/adaptive-responsive

3. https://docs.flutter.dev/ui/adaptive-responsive/safearea-mediaquery

5.14 ASSIGNMENT

1. What makes flutter a strong choice for ui development?

2. Explain use of MainAxisAlignment and CrossAxisAlignment properties

3. What is Flexible and Expanded widgets?

4. What is difference between Implicit and Explicit animation?

5. Define: Responsive Layout

https://docs.flutter.dev/ui/layout
https://docs.flutter.dev/ui/adaptive-responsive
https://docs.flutter.dev/ui/adaptive-responsive/safearea-mediaquery

67

Unit-6: State Management in
Flutter

Unit Structure

6.1 Learning Objectives

6.2 Introduction

6.3 Understanding State and Why It Matters

6.4 Local State Management using setState()

6.5 Overview of Popular State Management Approaches

6.6 Choosing the Right State Management for Your Project

6.7 Let us sum up

6.8 Check your Progress: Possible Answers

6.9 Further Reading

6.10 Assignment

6

68

6.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Define what state is and explain why state management is critical in Flutter

applications.

• Differentiate between local (ephemeral) state and global (app-wide) state.

• Implement basic state management using the setState() method.

• Identify the limitations of setState() in managing complex or global state.

• Describe the core principles and use cases of popular state management

libraries like Provider, Riverpod, Bloc, and GetX.

• Compare the features and benefits of each state management approach.

• Build a simple app using Provider to manage global state.

• Understand the role of ChangeNotifier and how to use Consumer to listen to state

changes.

• Implement state management using Riverpod and explain the benefits it offers

over Provider.

• Use different types of providers in Riverpod to manage app state.

• Implement state management using Bloc and understand the separation of

business logic from UI.

• Manage state transitions using events and states in a Bloc pattern.

• Create reactive state variables using GetX and observe automatic UI updates.

• Implement state management, navigation, and dependency injection using GetX.

• Evaluate and choose the appropriate state management solution based on the

size and complexity of a project.

• Understand when to use setState(), Provider, Riverpod, Bloc, or GetX in a real-

world scenario.

6.2 INTRODUCTION

State management is a fundamental concept in Flutter app development.

Understanding how to efficiently manage and update the state of your app is crucial

to creating dynamic and responsive user interfaces. This chapter will explore state

management in Flutter, from basic techniques using setState() to more advanced

69

approaches using popular state management packages like Provider, Riverpod,

Bloc, and GetX. We will also guide you on how to choose the most suitable state

management approach for your specific project.

6.3 UNDERSTANDING STATE AND WHY IT MATTERS

In Flutter, state refers to any data that affects the appearance or behavior of your

app. For example, the state of a counter app is the integer value displayed on the

screen. Similarly, the state of a shopping app might include the list of items in a cart.

State in Flutter can be categorized as:

• Ephemeral State (Local State): State that is only relevant to a single widget

or a small section of the widget tree, such as the current value of a text field or

a toggle switch.

• App State (Global State): State that needs to be shared across multiple parts

of the app, such as user authentication status or a theme setting. Global state

management is more complex and requires special tools or patterns.

Why does state management matter? When state changes, the user interface must

update to reflect those changes. If not handled correctly, state management can lead

to unnecessary re-renders, slow performance, and convoluted code.

6.4 LOCAL STATE MANAGEMENT USING setState()

The most basic and commonly used form of state management in Flutter is local

state management, which uses the setState() function. This approach is ideal for

managing small, transient pieces of state that are confined to a single widget.

Example: Managing Local State with setState()

class CounterPage extends StatefulWidget {
 @override
 _CounterPageState createState() => _CounterPageState();
}

class _CounterPageState extends State<CounterPage> {
 int _counter = 0; // Local state

 void _incrementCounter() {
 setState(() {

70

 _counter++; // Rebuild the UI with the new state
 });
 }

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: Text('Counter Example')),
 body: Center(
 child: Text('Counter: $_counter', style: TextStyle(fontSize: 24)),
),
 floatingActionButton: FloatingActionButton(
 onPressed: _incrementCounter,
 child: Icon(Icons.add),
),
);
 }
}

Limitations of setState()

While setState() is simple and effective for managing local state, it has limitations:

• Reusability: The state is confined to a specific widget and cannot easily be

shared with other parts of the app.

• Code Clutter: When managing multiple pieces of state across different parts of

the app, using setState() can result in scattered and unmanageable code.

• Performance: Overusing setState() can lead to unnecessary widget rebuilds,

affecting the performance of large or complex apps.

6.5 OVERVIEW OF POPULAR STATE MANAGEMENT
APPROACHES

As apps grow in complexity, you’ll need more robust state management solutions.

Flutter offers several powerful libraries and patterns that help manage state more

effectively, especially for global state. Here are four popular state management

approaches:

1. Provider: The Provider package is one of the most widely used state

management solutions in Flutter. It allows you to share state between widgets in

a clean, efficient way and is easy to scale as your app grows. Provider works by

71

making data available throughout the widget tree and notifying listeners

whenever the state changes.

Key Concepts:

• ChangeNotifier: A class that provides a simple way to notify listeners about

changes in state.

• Consumer: A widget that listens for changes in the ChangeNotifier and rebuilds

when the state changes.

Example Using Provider:

class CounterModel with ChangeNotifier {
 int _counter = 0;

 int get counter => _counter;

 void incrementCounter() {
 _counter++;
 notifyListeners(); // Notify listeners that the state has changed
 }
}

class CounterApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return ChangeNotifierProvider(
 create: (_) => CounterModel(),
 child: MaterialApp(
 home: CounterScreen(),
),
);
 }
}

class CounterScreen extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 final counterModel = Provider.of<CounterModel>(context);

 return Scaffold(
 appBar: AppBar(title: Text('Provider Example')),
 body: Center(
 child: Text('Counter: ${counterModel.counter}', style: TextStyle(fontSize: 24)),
),
 floatingActionButton: FloatingActionButton(
 onPressed: counterModel.incrementCounter,
 child: Icon(Icons.add),

72

),
);
 }
}

Provider simplifies the sharing of state across multiple widgets and automatically

handles notifying listeners when the state changes.

2. Riverpod: Riverpod is a modern state management library inspired by Provider

but with additional features and better safety. It removes some of the limitations

of Provider and offers more flexibility, such as compile-time safety and the ability

to handle side effects.

Key Concepts:

• Providers: Declares a piece of state that can be used and updated across the

app.

• StateNotifier: Similar to ChangeNotifier, but more suited for managing state

mutations and logic.

Riverpod works similarly to Provider, but with improvements that make it easier to

use in large applications. It’s also more type-safe and testable.

3. Bloc (Business Logic Component): Bloc is a more structured state

management pattern that separates business logic from UI. It uses Streams to

handle asynchronous data and events, making it a good choice for apps with

complex state or requiring advanced asynchronous operations.

Key Concepts:

• Bloc: Encapsulates business logic and handles state transitions.

• Events: Actions that trigger changes in the Bloc.

• States: The output of the Bloc, representing the current state of the app.

Bloc enforces a clear separation between business logic and UI, which helps

maintainable and testable code.

73

4. GetX: GetX is an all-in-one package that provides state management, navigation,

and dependency injection. It is known for being lightweight and easy to use, making

it a popular choice for developers looking for a simple solution that doesn’t require

boilerplate code.

Key Concepts:

• Reactive Programming: In GetX, state variables are made reactive so that the

UI automatically updates when the state changes.

• Controllers: Store the state and logic of the app.

Example Using GetX:

import 'package:get/get.dart';
import 'package:flutter/material.dart';

void main() {
 runApp(MaterialApp(
 home: Scaffold(
 body: Center(
 child: CounterScreen(),
),
),
));
}

class CounterController extends GetxController {
 var counter = 0.obs; // Make counter reactive

 void increment() => counter++;
}

class CounterScreen extends StatelessWidget {
 final CounterController c = Get.put(CounterController());

 CounterScreen({super.key});

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: const Text('GetX Example')),
 body: Center(
 child: Obx(() => Text('Counter: ${c.counter}',
 style: const TextStyle(fontSize: 24))),
),
 floatingActionButton: FloatingActionButton(
 onPressed: c.increment,

74

 child: const Icon(Icons.add),
),
);
 }
}

6.6 CHOOSING THE RIGHT STATE MANAGEMENT FOR
YOUR PROJECT

Choosing the right state management solution depends on the size and complexity

of your project, as well as your team's familiarity with various tools. Here are some

guidelines:

For Small Apps or Local State:

• Use setState() for simple state management that’s confined to individual widgets.

This is ideal for smaller apps or when only a small portion of the UI needs to

change.

For Medium-Sized Apps:

• Provider or Riverpod: These are well-suited for apps that have moderate

complexity and need to share state across multiple widgets or screens. They are

easy to set up, scale well, and have extensive community support.

For Large or Complex Apps:

• Bloc: If your app has complex business logic, asynchronous data streams, or

needs strict separation between logic and UI, Bloc is a good choice. It helps

structure your app for long-term scalability and testability.

• GetX: Choose GetX for apps where you need a simple but powerful state

management solution that integrates well with navigation and dependency

injection.

For Apps with Async Operations:

• Bloc: Bloc is built around handling asynchronous operations and is ideal for apps

with complex API calls, data streams, or event-driven architectures.

75

For Developer Productivity:

• GetX: GetX is highly productive due to its simplicity, minimal boilerplate, and

support for various aspects of app development (state, navigation, etc.).

Check your progress-1

a) The most basic and commonly used form of state management in Flutter is local

state management, which uses the __________function.

b) ________ state management is more complex and requires special tools or

patterns. (local, global)

c) There are _______popular state management approaches

d) Give full form of BLOC

e) ________ is is highly productive due to its simplicity, minimal boilerplate, and

support for various aspects of app development

f) State management is a critical part of building Flutter apps. (True/False).

6.7 LET US SUM UP

State management is a critical part of building Flutter apps. Whether you are working

on a small app with limited state changes or a large app with complex business logic,

understanding the right tools and techniques for managing state will help you build

efficient, scalable, and maintainable applications. From basic local state

management with setState() to more advanced approaches like Provider, Riverpod,

Bloc, and GetX, each solution has its strengths and use cases. By choosing the right

state management approach for your project, you can streamline your development

process and ensure a smoother user experience.

6.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-a) setState()

1-b) Global

1-c) four

1-d) Business Logic Component

1-e) GetX

1-f) True

76

6.9 FURTHER READING

• https://docs.flutter.dev/data-and-backend/state-mgmt/intro

• https://docs.flutter.dev/data-and-backend/state-mgmt/options

6.10 ASSIGNMENT

1. What is state management?

2. Explain local state management in flutter with suitable example

3. What is local state and global state

4. List limitations of setState()

5. Write detailed note on popular state management approaches used in Flutter

6. What are the guidelines for choosing the Right State Management for Your

Project?

https://docs.flutter.dev/data-and-backend/state-mgmt/intro
https://docs.flutter.dev/data-and-backend/state-mgmt/options

77

Unit-7: Working with Flutter
Navigation

Unit Structure

7.1 Learning Objectives

7.2 Introduction

7.3 Basic Navigation Using Navigator and Routes

7.4 Named Routes

7.5 Passing Data Between Screens

7.6 Deep Linking and Managing Complex Navigation Flows

7.7 Nested Navigation

7.8 Working with the Navigator 2.0 API

7.9 Let us sum up

7.10 Check your Progress: Possible Answers

7.11 Further Reading

7.12 Assignment

7

78

7.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Explain how Flutter uses the Navigator and routes to manage navigation between

screens.

• Define the stack-based navigation system and its role in app navigation.

• Navigate between screens using Navigator.push() to add routes and

Navigator.pop() to remove them.

• Identify scenarios where basic navigation is sufficient for app flows.

• Set up named routes in Flutter to streamline navigation across multiple screens.

• Navigate using Navigator.pushNamed() and Navigator.pop() with named routes.

• Pass data between screens using both unnamed and named routes.

• Retrieve and use data passed between screens using

ModalRoute.of(context).settings.arguments.

• Explain what deep linking is and why it's important for app navigation.

• Implement deep linking in Flutter using packages like uni_links to handle external

links that open specific screens within the app.

• Handle complex navigation flows, such as multi-step workflows, onboarding

processes, and conditional navigation.

• Implement dynamic routing based on deep link URIs and manage navigation

states accordingly.

• Explain the concept of nested navigation and when it is used.

• Implement nested navigation in apps using widgets like BottomNavigationBar or

tab-based navigation, each with independent navigation stacks.

• Describe the limitations of Navigator 1.0 and the benefits of the Navigator 2.0

API.

• Implement navigation using Navigator 2.0 for more complex use cases and web

apps, including using the Router widget and declarative navigation.

• Evaluate the complexity of your app’s navigation flow and select the appropriate

navigation method (basic navigation, named routes, deep linking, or Navigator

2.0).

• Apply best practices to ensure smooth, efficient, and scalable navigation flows in

your Flutter projects.

79

7.2 INTRODUCTION

Navigation is a fundamental aspect of any mobile application. Whether you're

navigating between simple pages, passing data between screens, or handling

complex deep links, understanding Flutter's navigation system is essential for

creating smooth and intuitive user experiences. In this chapter, we will dive deep into

Flutter's navigation system, covering basic navigation using the Navigator and

routes, how to use named routes, passing data between screens, handling deep

links, managing complex navigation flows, and nested navigation using the

advanced Navigator 2.0 API.

7.3 BASIC NAVIGATION USING NAVIGATOR AND
ROUTES

In Flutter, navigation between screens is managed by the Navigator class, which

works like a stack. When a new screen is pushed onto the stack, it appears on top of

the current screen, and when the top screen is popped, the previous screen

becomes visible again. The most basic way to navigate between screens in Flutter is

by using the Navigator and defining routes.

Basic Navigation with Navigator.push() and Navigator.pop()

To navigate to a new screen, you can use the Navigator.push() method, and to go

back to the previous screen, you use Navigator.pop().

Example: Basic Navigation

import 'package:flutter/material.dart';

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Flutter Navigation',
 home: HomeScreen(),
);
 }
}
class HomeScreen extends StatelessWidget {
 @override

80

 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: Text('Home Screen')),
 body: Center(
 child: ElevatedButton(
 onPressed: () {
 // Navigate to the next screen
 Navigator.push(
 context,
 MaterialPageRoute(builder: (context) => SecondScreen()),
);
 },
 child: Text('Go to Second Screen'),
),
),
);
 }
}

class SecondScreen extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: Text('Second Screen')),
 body: Center(
 child: ElevatedButton(
 onPressed: () {
 // Go back to the previous screen
 Navigator.pop(context);
 },
 child: Text('Go back'),
),
),
);
 }
}

In this example, clicking the button on the HomeScreen pushes the SecondScreen

onto the stack, and pressing the button on the SecondScreen pops it from the stack,

returning to the HomeScreen.

7.4 NAMED ROUTES

For larger apps with multiple screens, managing navigation using unnamed routes

can become cumbersome. Flutter provides named routes as a way to define and

navigate between screens more efficiently.

81

Setting Up Named Routes

Named routes can be defined in the MaterialApp widget using the routes property,

which maps a route name (String) to a widget (screen).

Example: Using Named Routes

import 'package:flutter/material.dart';

void main() => runApp(const MyApp());

class MyApp extends StatelessWidget {
 const MyApp({super.key});

 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Named Routes Example',
 // Define the routes
 routes: {
 '/': (context) => const HomeScreen(),
 '/second': (context) => const SecondScreen(),
 },
);
 }
}

class HomeScreen extends StatelessWidget {
 const HomeScreen({super.key});

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: const Text('Home Screen')),
 body: Center(
 child: ElevatedButton(
 onPressed: () {
 // Navigate to the second screen using a named route
 Navigator.pushNamed(context, '/second');
 },
 child: const Text('Go to Second Screen'),
),
),
);
 }
}

class SecondScreen extends StatelessWidget {
 const SecondScreen({super.key});

82

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: const Text('Second Screen')),
 body: Center(
 child: ElevatedButton(
 onPressed: () {
 // Go back to the previous screen
 Navigator.pop(context);
 },
 child: const Text('Go back'),
),
),
);
 }
}

In this case, the Navigator.pushNamed() method is used to navigate between named

routes. The benefit of using named routes is that they can be easily reused

throughout the app and are defined centrally.

7.5 PASSING DATA BETWEEN SCREENS

Often, you'll need to pass data between screens. This can be done by passing

arguments when navigating to a screen.

Example: Passing Data Using Named Routes

class HomeScreen extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: Text('Home Screen')),
 body: Center(
 child: ElevatedButton(
 onPressed: () {
 // Pass data to the second screen
 Navigator.pushNamed(
 context,
 '/second',
 arguments: 'Hello from HomeScreen!',
);
 },
 child: Text('Go to Second Screen with Data'),
),
),
);
 }

83

}

class SecondScreen extends StatelessWidget {

 @override

 Widget build(BuildContext context) {

 // Retrieve the data passed as an argument

 final String data = ModalRoute.of(context)!.settings.arguments as String;

 return Scaffold(

 appBar: AppBar(title: Text('Second Screen')),

 body: Center(

 child: Text(data, style: TextStyle(fontSize: 24)),

),

);

 }

}

In this example, the arguments parameter is used to pass data from HomeScreen to

SecondScreen. The ModalRoute.of(context).settings.arguments is then used to

retrieve the data.

7.6 DEEP LINKING AND MANAGING COMPLEX
NAVIGATION FLOWS

Deep linking allows your app to be opened directly at a specific screen from external

sources, like a web link or another app. This is essential for apps that handle

complex navigation flows, such as those that require specific onboarding processes

or multi-step workflows.

What is Deep Linking?

Deep linking refers to using a URL to link directly to a specific page in your app. For

instance, a user might click on a link in an email that directly opens a product page in

an e-commerce app.

Handling Deep Links in Flutter

84

Flutter provides support for deep linking through packages like uni_links and

firebase_dynamic_links. You can handle deep links by parsing incoming URIs and

routing the user to the appropriate screen based on the URI.

7.7 NESTED NAVIGATION

In more advanced use cases, apps may need to handle nested navigation where a

section of the app has its own navigation stack. For example, a tabbed application

might have separate navigation flows for each tab.

Nested Navigation

Nested navigation allows different parts of an app to maintain their own navigation

history independently. This is common in apps with multiple sections, like a bottom

navigation bar or drawer menu.

Example: Nested Navigation with a Bottom Navigation Bar

class MyApp extends StatefulWidget {
 @override
 _MyAppState createState() => _MyAppState();
}

class _MyAppState extends State<MyApp> {
 int _currentIndex = 0;

 final List<Widget> _screens = [
 HomeScreen(),
 SettingsScreen(),
];

 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 home: Scaffold(
 body: _screens[_currentIndex],
 bottomNavigationBar: BottomNavigationBar(
 currentIndex: _currentIndex,
 onTap: (index) {
 setState(() {
 _currentIndex = index;
 });
 },
 items: [

85

 BottomNavigationBarItem(icon: Icon(Icons.home), label: 'Home'),
 BottomNavigationBarItem(icon: Icon(Icons.settings), label: 'Settings'),
],
),
),
);
 }
}

Here, each tab has its own screen, and the navigation between the tabs is

independent.

7.8 WORKING WITH THE NAVIGATOR 2.0 API

The original Navigator API (Navigator 1.0) works well for simple cases but has

limitations when handling complex navigation flows. Navigator 2.0 introduces more

flexibility by decoupling the navigation logic from the user interface. It uses the

Router widget and a new declarative API that gives developers more control over

navigation, especially when dealing with web applications or integrating with the

browser's back button.

Navigator 2.0 is especially powerful for web apps and apps with more complex state-

driven navigation.

Check Your Progress-1

a) In Flutter, navigation between screens is managed by the Navigator class, which

works like a ________.

a) Stack b) Queue c) List d) Tree

b) To navigate to a new screen, you can use the Navigator.push() method, and to

go back to the previous screen, you use Navigator.pop(). (True/False)

c) For larger apps with multiple screens, managing navigation using unnamed

routes can become easy. (True / False)

d) Nested navigation allows different parts of an app to maintain their own

navigation history independently.

a) Inner b) Outer c) Nested d) All of these

e) Deep linking allows your app to be opened directly at a specific screen from

external sources, like a web link or another app.(True / False)

86

7.9 LET US SUM UP

Navigation in Flutter ranges from simple stack-based navigation using

Navigator.push() to more complex workflows using deep linking, named routes, and

the advanced Navigator 2.0 API. Each method offers different levels of control and

flexibility, and choosing the right approach depends on the complexity of your app's

navigation needs. Understanding these tools will help you build smooth, intuitive, and

efficient navigation flows in your Flutter applications.

7.10 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-a) Stack

1-b) True

1-c) False

1-d) Nested

1-e) True

7.11 FURTHER READING

• https://docs.flutter.dev/ui/navigation

• https://docs.flutter.dev/cookbook/navigation/navigation-basics

• https://docs.flutter.dev/cookbook/navigation/returning-data

7.12 Assignment

1. Explain navigation using navigator and routes

2. Explain use of named touter

3. What is nested navigation?

4. What is deep linking?

5. Explain with code snippet example how can we pass data between screen?

https://docs.flutter.dev/ui/navigation
https://docs.flutter.dev/cookbook/navigation/navigation-basics
https://docs.flutter.dev/cookbook/navigation/returning-data

87

Block-3:

Flutter Application Data

Management

88

Unit-8: Integrating APIs and
Working with Data

Unit Structure

8.1 Learning Objectives

8.2 Introduction

8.3 Fetching Data from REST APIs Using http Package

8.4 Parsing JSON Data and Displaying it in the UI

8.5 Handling Loading States and Error Cases

8.6 Sending Data to APIs (POST, PUT, DELETE Requests)

8.7 Let us sum up

8.8 Check your Progress: Possible Answers

8.9 Further Reading

8.10 Assignment

8.11 Activities

8

89

8.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Comprehend how REST APIs work and the role of the http package in Flutter for

making network requests.

• Use the http package to send GET requests to retrieve data from APIs.

• Parse JSON data and use it to update the user interface dynamically.

• Convert raw JSON responses into Dart objects using jsonDecode.

• Display complex JSON data within Flutter widgets like ListView and GridView.

• Implement loading indicators (e.g., CircularProgressIndicator) while waiting for

data.

• Manage errors such as network failures or server errors and display appropriate

messages to the user.

• Send Data to APIs Using POST, PUT, and DELETE Requests:

• Implement POST requests to send new data to a server (e.g., creating new

records).

• Use PUT requests to update existing data and DELETE requests to remove

resources on a server.

• Design Flutter apps that interact seamlessly with external data sources.

• Handle real-time updates and user interactions while managing data flow

between the app and APIs effectively.

8.2 INTRODUCTION

In modern mobile applications, working with external data sources is critical.

Whether you're building a weather app, social media feed, or a to-do list app, you’ll

likely need to fetch, display, and send data to and from a remote server via APIs. In

Flutter, integrating APIs and working with data is seamless thanks to the http

package, which allows us to perform RESTful API operations like GET, POST, PUT,

and DELETE requests. This chapter will walk you through the process of integrating

APIs, handling data, and managing loading states and errors effectively.

90

8.3 FETCHING DATA FROM REST APIS USING HTTP
PACKAGE

APIs serve as a bridge between your app and external data sources or services. To

communicate with REST APIs in Flutter, we use the http package, which provides

simple methods to send HTTP requests.

Adding the http Package

First, you need to add the http package to your project’s pubspec.yaml file:

dependencies:

 flutter:

 sdk: flutter

 http: ^0.13.3

Run flutter pub get to install the package.

Making a GET Request

Fetching data from REST APIs is a common requirement in modern mobile apps. In

this section, we’ll break down the code example that fetches data from a REST API

using Flutter's http package, step by step.

A GET request retrieves data from the server. Here’s a basic example of how to

fetch data from a public API:

Here we go step by step

Step-1: Importing Required Packages

import 'package:flutter/material.dart';
import 'package:http/http.dart' as http;
import 'dart:convert'; // For working with JSON data

• flutter/material.dart: Provides essential widgets for creating a Flutter app, like

Scaffold, AppBar, and ListView.

• http: This is the http package that enables sending and receiving HTTP requests.

It allows us to interact with APIs.

• dart:convert: This library is used to decode the JSON response that we receive

from the API.

91

Step-2: Creating the Main Application

void main() => runApp(MyApp());

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 home: ApiDataScreen(),
);
 }
}

• The main() function is the entry point of the app. It runs MyApp(), which is the

root widget of our application.

• Inside MyApp, a MaterialApp widget is used with ApiDataScreen as the home

screen. This is the screen where we will fetch and display API data.

Step-3: Creating Stateful Widget for Fetching Data

class ApiDataScreen extends StatefulWidget {
 @override
 _ApiDataScreenState createState() => _ApiDataScreenState();
}

• ApiDataScreen is a stateful widget because we need to manage changes in

data (like fetching data from the API).

• The createState() method creates an instance of _ApiDataScreenState which

contains the logic for fetching and displaying the data.

Step-4: Defining the State and Variables

class _ApiDataScreenState extends State<ApiDataScreen> {
 List<dynamic> _data = [];

• _data: A list that will store the data fetched from the API. It is initialized as an

empty list.

• We’ll later update this list with the data we fetch from the API and display it on the
screen.

Step-5: Fetching Data with a GET Request

Future<void> fetchData() async {
final response = await
http.get(Uri.parse('https://jsonplaceholder.typicode.com/posts'));

92

• fetchData(): A future function that sends a GET request to the API. We use the
http.get() method to send the request.

• Uri.parse(): Converts the string URL into a URI format that is needed by the http
package.

• The API URL in this example is https://jsonplaceholder.typicode.com/posts,
which returns a list of placeholder posts.

Step-6: 6. Handling the API Response

 if (response.statusCode == 200) {
 // Parse the JSON response
 setState(() {
 _data = jsonDecode(response.body);
 });
 } else {
 throw Exception('Failed to load data');
 }
 }

• statusCode == 200: The status code 200 means that the request was

successful.

• jsonDecode(response.body): Converts the response body (which is a JSON

string) into a Dart object, which in this case is a list of posts. Each post has fields

like id, title, and body.

• setState(): Once the data is successfully fetched, we update the _data list with

the parsed data inside setState() so that the UI will re-render and display the

fetched data.

• Error handling: If the API call fails (i.e., the status code is not 200), an exception

is thrown to indicate that the data could not be loaded.

Step-7: Calling the API on Widget Creation

 @override
 void initState() {
 super.initState();
 fetchData(); // Fetch data when the widget is first created
 }

• initState(): This lifecycle method is called when the widget is first inserted into

the widget tree. We call fetchData() here to ensure that the data is fetched

immediately when the screen loads.

• When the data is fetched, the _data list is populated, and the UI will display the

data.

93

Step-8: Building the UI

 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(
 title: Text('API Data'),
),
 body: _data.isEmpty
 ? Center(child: CircularProgressIndicator()) // Show loading spinner while data
is being fetched
 : ListView.builder(
 itemCount: _data.length,
 itemBuilder: (context, index) {
 return ListTile(
 title: Text(_data[index]['title']),
 subtitle: Text(_data[index]['body']),
);
 },
),
);
 }
}

• Scaffold: Provides the structure for the screen, including the AppBar and the

body of the app.

• CircularProgressIndicator: A loading spinner that is displayed while the data is

being fetched (i.e., when _data is empty).

• ListView.builder: A scrollable list that dynamically generates list items based on

the number of data entries (_data.length). For each item in the list, we create a

ListTile displaying the title and body of each post.

Breaking Down ListView:

• itemCount: _data.length: Specifies how many list items to build (one for each

data entry).

• itemBuilder: Builds each list item with a title and subtitle using data from the

_data list.

This example demonstrates how to perform basic API calls and display data in a

Flutter app, which is essential for creating dynamic, data-driven applications.

94

8.4 PARSING JSON DATA AND DISPLAYING IT IN THE UI

APIs typically return data in JSON (JavaScript Object Notation) format. JSON is a

lightweight format for storing and transporting data, which is easy to parse into

Flutter objects.

In the above example, the data returned from the API is in JSON format and is

decoded using jsonDecode(response.body).

Example of JSON Data:

Here’s an example of what JSON data might look like when returned from an API:

json

Copy code

[

 {

 "userId": 1,

 "id": 1,

 "title": "First Post Title",

 "body": "This is the content of the first post."

 },

95

 {

 "userId": 1,

 "id": 2,

 "title": "Second Post Title",

 "body": "This is the content of the second post."

 }

]

In the example above, each item in the list has a title and a body, which we display

using ListTile in our app.

8.5 HANDLING LOADING STATES AND ERROR CASES

When fetching data from an API, we need to handle potential delays in response

(loading state) as well as errors (e.g., server issues or network problems).

Loading State

The most common way to indicate loading is by displaying a loading spinner (e.g.,

CircularProgressIndicator). In the example above, we show the spinner if the _data

list is empty:

body: _data.isEmpty
 ? Center(child: CircularProgressIndicator())
 : ListView.builder(...);

Error Handling

It’s also important to handle scenarios where the API request fails, such as a timeout

or a server returning a 500 error. You can show an error message when this

happens:

Future<void> fetchData() async {
 try {
 final response = await
http.get(Uri.parse('https://jsonplaceholder.typicode.com/posts'));

 if (response.statusCode == 200) {
 setState(() {
 _data = jsonDecode(response.body);
 });
 } else {

96

 throw Exception('Failed to load data');
 }
 } catch (e) {
 setState(() {
 _data = [];
 });
 // Show an error message or dialog
 ScaffoldMessenger.of(context).showSnackBar(
 SnackBar(content: Text('Failed to load data: $e')),
);
 }
}

Here, we use a try-catch block to catch any errors that may occur during the API call

and display a message using SnackBar.

8.6 SENDING DATA TO APIS (POST, PUT, DELETE
REQUESTS)

APIs not only allow you to fetch data but also to send data to servers. You may

need to create new entries (POST), update existing data (PUT), or delete entries

(DELETE). Here’s how you can perform these requests in Flutter.

POST Request: Creating New Data

A POST request is used to send new data to the server. Here’s how you can send

data to an API using the http.post method:

Future<void> createPost(String title, String body) async {
 final response = await http.post(
 Uri.parse('https://jsonplaceholder.typicode.com/posts'),
 headers: {"Content-Type": "application/json"},
 body: jsonEncode({
 "title": title,
 "body": body,
 "userId": 1,
 }),
);

 if (response.statusCode == 201) {
 print('Post created successfully: ${response.body}');
 } else {
 throw Exception('Failed to create post');
 }
}

97

In this example, we’re sending a new post with a title, body, and userId to the server.

The API will process this data and, upon success, return a 201 status code indicating

that the resource has been created.

PUT Request: Updating Existing Data

To update an existing record, we use the PUT request. This is similar to a POST

request but is used for modifying existing resources:

Future<void> updatePost(int id, String title, String body) async {
 final response = await http.put(
 Uri.parse('https://jsonplaceholder.typicode.com/posts/$id'),
 headers: {"Content-Type": "application/json"},
 body: jsonEncode({
 "title": title,
 "body": body,
 "userId": 1,
 }),
);

 if (response.statusCode == 200) {
 print('Post updated successfully: ${response.body}');
 } else {
 throw Exception('Failed to update post');
 }
}

Here, we specify the id of the post we want to update and send the updated title and

body to the API.

DELETE Request: Deleting Data

A DELETE request is used to remove a resource from the server. Here’s an

example:

Future<void> deletePost(int id) async {
 final response = await http.delete(
 Uri.parse('https://jsonplaceholder.typicode.com/posts/$id'),
);

 if (response.statusCode == 200) {
 print('Post deleted successfully');
 } else {
 throw Exception('Failed to delete post');
 }
}

98

Check Your Progress

1. Which package is commonly used in Flutter for making HTTP requests to REST

APIs?

 a) json b) http c) flutter_http d) api_flutter

2. What method is used to decode a JSON response in Flutter?

 a) jsonDecode() b) jsonEncode() c) decodeJson() d) toJson()

3. In the following code, which HTTP method is being used to send data to an API?

 final response = await http.post(

 Uri.parse('https://example.com/api'),

 headers: {"Content-Type": "application/json"},

 body: jsonEncode({"name": "John", "age": 30}),

);

 a) GET b) POST c) PUT d) DELETE

4. What widget can you use in Flutter to display a loading spinner while data is

being fetched?

 a) ListView b) Scaffold c) CircularProgressIndicator d) LinearProgressIndicator

5. If an API returns a status code of 200, what does it signify?

 a) The request failed due to a client error

 b) The request was successful

 c) The server is down

 d) The request is unauthorized

8.7 LET US SUM UP

In this chapter, we explored how to integrate REST APIs into your Flutter

applications using the http package. We covered how to:

1. Fetch and display data using GET requests.

2. Parse JSON data and render it in the UI.

3. Handle loading states and manage errors effectively.

4. Send data to APIs using POST, PUT, and DELETE requests.

By mastering these techniques, you’ll be able to create feature-rich applications that

communicate with external servers and provide dynamic, real-time content to users.

99

8.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1. b) http

2. a) jsonDecode()

3. b) POST

4. c) CircularProgressIndicator

5. b) The request was successful

8.9 FURTHER READING

1. https://docs.flutter.dev/data-and-backend/networking

2. https://docs.flutter.dev/cookbook/networking/fetch-data

8.10 ASSIGNMENT

1. Explain the role of the http package in Flutter. Why is it essential for working with

APIs?

2. Describe the process of converting a JSON response from an API into Dart

objects. Why is jsonDecode() necessary?

3. What is the difference between GET and POST requests in the context of REST

APIs? Provide examples of when each would be used in a Flutter app.

4. How would you handle loading and error states when fetching data from an API

in Flutter? Why is it important to manage these states effectively?

5. Describe a real-world scenario where you would need to use a PUT or DELETE

request in a Flutter app. How would you implement this functionality?

8.11 ACTIVITIES

1. Fetch Data from an API and Display It in a Flutter App

Create a Flutter application that fetches data from a public REST API (e.g., a list

of posts or users from the JSONPlaceholder API) using the http package. Display

the fetched data in a ListView widget and ensure that the app shows a loading

spinner while data is being fetched.

2. Handling Loading and Error States

https://docs.flutter.dev/data-and-backend/networking
https://docs.flutter.dev/cookbook/networking/fetch-data

100

Modify your existing Flutter app to handle loading and error states more

effectively. Add a loading indicator when data is being fetched, and display an

error message if the API request fails (e.g., due to network issues or an invalid

URL). Document your approach to managing both loading and error states.

3. Parsing and Displaying Nested JSON Data

Find or create an API that returns a more complex, nested JSON structure (e.g.,

a list of users where each user has nested attributes such as address, company,

etc.). Parse this nested data in your Flutter app and display key pieces of

information in the UI. Ensure that you properly handle nested objects and lists

when parsing the JSON.

4. Sending Data to a REST API

Build a Flutter form that allows users to input data (e.g., name, email, message).

When the form is submitted, send this data to an API endpoint using a POST

request. If a valid API is unavailable, simulate this process using a dummy REST

API like Reqres for testing.

5. Update and Delete Data Using REST API (PUT and DELETE)

Create a Flutter app that can update and delete data from a REST API using

PUT and DELETE requests. Use a public API or mock API to test your

implementation. Demonstrate how to update existing records (e.g., modify a

user’s information) and delete records (e.g., remove a post or user) from the

server.

101

Unit-9: Storing Data Locally

Unit Structure

9.1 Learning Objectives

9.2 Introduction

9.3 Introduction to Local Storage Options

9.4 Implementing Persistent Storage with SQLite

9.5 Using Hive for Lightweight, High-Performance Local Storage

9.6 Managing App Settings and Preferences with Shared Preferences

9.7 Let us sum up

9.8 Check your Progress: Possible Answers

9.9 Further Reading

9.10 Assignment

9.11 Activities

9

102

9.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Identify and differentiate between various local storage solutions such as Shared

Preferences, SQLite, and Hive, and understand their use cases and limitations.

• Set up and manage a SQLite database in a Flutter app using the sqflite package,

perform CRUD (Create, Read, Update, Delete) operations, and handle structured

data efficiently.

• Integrate Hive into a Flutter application for fast, NoSQL data storage and

implement data models for efficient local storage of unstructured or large

datasets.

• Utilize the Shared Preferences package to store simple key-value pairs, manage

user preferences, and retain app state or settings across sessions.

• Evaluate the advantages and disadvantages of Shared Preferences, SQLite, and

Hive in various application scenarios and choose the appropriate storage solution

based on performance, data structure, and persistence needs.

• Understand the importance of local storage for offline applications, and how to

manage and retrieve data even when the app is not connected to the internet.

9.2 INTRODUCTION

In mobile app development, managing data is crucial, especially when dealing with

offline scenarios or when you need to persist user data between app sessions.

Flutter provides several options for local storage, enabling you to store and retrieve

data efficiently without always relying on a remote server. In this chapter, we will

explore the key topics such as Introduction to Local Storage Options: Shared

Preferences, SQLite, and Hive, Implementing Persistent Storage with SQLite, Using

Hive for Lightweight, High-Performance Local Storage and Managing App Settings

and Preferences.

9.3 INTRODUCTION TO LOCAL STORAGE OPTIONS

Flutter offers multiple ways to store data locally, each suited for different use cases.

Let’s explore three common local storage options:

103

a) Shared Preferences

Shared Preferences is a simple key-value storage system. It is used for storing small

amounts of primitive data types, such as strings, booleans, and integers. The data is

stored in a file on the device and can be retrieved even after the app is closed and

reopened.

• Use case: Store user preferences, theme settings, or app state (e.g., whether

the user has logged in).

• Advantages: Easy to use, minimal setup, good for lightweight data.

• Disadvantages: Not suitable for storing large or complex data.

b) SQLite

SQLite is a lightweight, embedded relational database. It provides powerful querying

capabilities with SQL syntax and is ideal for structured data. It can handle more

complex data structures than Shared Preferences.

• Use case: Store structured data like user profiles, products, or application

content.

• Advantages: Supports complex queries, relational data, and multiple tables.

• Disadvantages: Requires more setup and management compared to Shared

Preferences.

c) Hive

Hive is a modern, NoSQL database for Flutter. It is designed for high-performance

storage and works well for apps that require fast and efficient data access. Hive

stores data in a binary format, making it significantly faster than SQLite for certain

types of data.

• Use case: Store large amounts of unstructured data like user settings,

preferences, or cached content.

• Advantages: Very fast, minimal setup, no need for a relational schema.

• Disadvantages: Limited query capabilities compared to SQLite.

104

9.4 IMPLEMENTING PERSISTENT STORAGE WITH
SQLITE

SQLite is a powerful and widely used database in mobile applications. In Flutter, you

can use the sqflite package to work with SQLite databases. Below is an example of

how to implement SQLite for local storage.

a) Adding the sqflite package

First, include the sqflite package and path_provider in your pubspec.yaml file:

dependencies:
 sqflite: ^2.0.0
 path_provider: ^2.0.0

b) Setting up SQLite Database

import 'package:sqflite/sqflite.dart';
import 'package:path/path.dart';

class DatabaseHelper {
 static final DatabaseHelper _instance = DatabaseHelper._internal();
 factory DatabaseHelper() => _instance;

 static Database? _database;

 DatabaseHelper._internal();

 Future<Database> get database async {
 if (_database != null) return _database!;
 _database = await _initDatabase();
 return _database!;
 }

 Future<Database> _initDatabase() async {
 String path = join(await getDatabasesPath(), 'app_data.db');
 return await openDatabase(
 path,
 version: 1,
 onCreate: (db, version) async {
 await db.execute('''
 CREATE TABLE users(
 id INTEGER PRIMARY KEY AUTOINCREMENT,
 name TEXT,
 age INTEGER
)
 ''');
 },

105

);
 }
}

c) Inserting and Retrieving Data

Future<void> insertUser(Map<String, dynamic> user) async {
 final db = await DatabaseHelper().database;
 await db.insert('users', user);
}

Future<List<Map<String, dynamic>>> getUsers() async {
 final db = await DatabaseHelper().database;
 return await db.query('users');
}

d) Displaying Data in the UI

You can now display the fetched data in a Flutter widget like ListView:

FutureBuilder<List<Map<String, dynamic>>>(
 future: getUsers(),
 builder: (context, snapshot) {
 if (!snapshot.hasData) return CircularProgressIndicator();
 return ListView.builder(
 itemCount: snapshot.data?.length ?? 0,
 itemBuilder: (context, index) {
 return ListTile(
 title: Text(snapshot.data![index]['name']),
 subtitle: Text('Age: ${snapshot.data![index]['age']}'),
);
 },
);
 },
)

9.5 USING HIVE FOR LIGHTWEIGHT, HIGH-
PERFORMANCE LOCAL STORAGE

Hive is an efficient NoSQL database designed for high performance. It is ideal for

Flutter apps that need to store large amounts of data quickly.

a) Adding the Hive Package

Add Hive and its Flutter adapter to your pubspec.yaml:

dependencies:
 hive: ^2.0.0

106

 hive_flutter: ^1.1.0

b) Initializing Hive

Before using Hive, initialize it in your main() function:

import 'package:hive/hive.dart';
import 'package:hive_flutter/hive_flutter.dart';

void main() async {
 await Hive.initFlutter();
 runApp(MyApp());
}

c) Storing and Retrieving Data

To store data, first open a box (a container for data storage), then use put() to insert

data and get() to retrieve it.

var box = await Hive.openBox('settings');

// Storing data
box.put('username', 'JohnDoe');

// Retrieving data
String username = box.get('username');

d) Working with Hive Data Models

Hive allows you to store custom objects using Hive models:

@HiveType(typeId: 0)
class User extends HiveObject {
 @HiveField(0)
 String name;
 @HiveField(1)
 int age;

 User(this.name, this.age);
}

After creating the model, register the adapter:

Hive.registerAdapter(UserAdapter());

9.6 MANAGING APP SETTINGS AND PREFERENCES WITH
SHARED PREFERENCES

107

For managing user settings, theme modes, or preferences, Shared Preferences is

an ideal choice. It stores data in key-value pairs and is persistent across app

launches.

a) Adding Shared Preferences Package

Add the package in pubspec.yaml:

dependencies:

 shared_preferences: ^2.0.0

b) Storing and Retrieving Preferences

You can store and retrieve user preferences like theme settings or login status using

SharedPreferences.

import 'package:shared_preferences/shared_preferences.dart';

Future<void> saveLoginStatus(bool isLoggedIn) async {
 final prefs = await SharedPreferences.getInstance();
 prefs.setBool('isLoggedIn', isLoggedIn);
}

Future<bool> getLoginStatus() async {
 final prefs = await SharedPreferences.getInstance();
 return prefs.getBool('isLoggedIn') ?? false;
}

Check Your Progress

• Which of the following is the best local storage solution in Flutter for storing

simple key-value pairs?

 a) SQLite b) Hive c) Shared Preferences d) Firebase

• Which package is commonly used in Flutter to implement an SQLite database for

storing structured data?

 a) sqflite b) hive c) shared_preferences d) path_provider

• What is a primary advantage of using Hive for local storage in Flutter?

a) It is a relational database with complex querying.

b) It supports high-performance, NoSQL data storage.

108

c) It automatically syncs data with a remote server.

d) It is designed to store only key-value pairs.

• What method would you use to save a boolean value, such as a login status, in

Shared Preferences?

 a) prefs.setInt() b) prefs.setString() c) prefs.setBool() d) prefs.setDouble()

• Which of the following is true about SQLite in Flutter?

a) SQLite is a NoSQL database that stores data in a binary format.

b) SQLite supports complex queries and relational data structures.

c) SQLite is used only for storing simple key-value pairs.

d) SQLite automatically syncs data with a cloud server.

9.7 LET US SUM UP

Flutter offers a wide range of local storage solutions tailored for different types of

data. Shared Preferences is excellent for storing simple key-value pairs, SQLite is

suitable for relational databases and complex queries, while Hive offers high

performance for unstructured data. Understanding these storage methods will help

you build robust applications that handle offline capabilities, user preferences, and

persistent data efficiently.

By mastering these tools, you can create feature-rich Flutter applications that

effectively manage and store data locally.

9.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-c) Shared Preferences

2-a) sqflite

3-b) It supports high-performance, NoSQL data storage.

4-c) prefs.setBool()

5-b) SQLite supports complex queries and relational data structures.

9.9 FURTHER READING

• https://pub.dev/packages/hive_flutter/versions

https://pub.dev/packages/hive_flutter/versions

109

• https://pub.dev/packages/shared_preferences

• https://docs.flutter.dev/cookbook/persistence/key-value

9.10 ASSIGNMENT

• What are the main differences between Shared Preferences, SQLite, and Hive?

In what scenarios would you use each of them?

• Explain how you would set up a SQLite database in Flutter using the sqflite

package. What steps are involved in creating a table and inserting data into it?

• How does Hive differ from SQLite in terms of performance and data storage

structure? When would Hive be a better choice than SQLite?

• Describe how Shared Preferences work. What types of data can be stored using

Shared Preferences and how can you retrieve them in Flutter?

• In a Flutter app, how would you handle updating app settings (like theme

preference) and ensure the settings are persistent across app launches using

Shared Preferences?

• Discuss the challenges of managing data locally in offline scenarios and how

Flutter’s local storage solutions can help overcome these challenges.

• How would you handle data retrieval and display from a SQLite database in a

Flutter application? Provide a brief explanation of how to manage reading and

writing operations asynchronously.

• Compare the advantages and disadvantages of using Hive over other local

storage options like SQLite or Shared Preferences.

9.11 ACTIVITIES

• Implement User Preferences with Shared Preferences

Build a Flutter app that allows users to toggle between light and dark themes.

Use the Shared Preferences package to store the user's theme preference so

that it persists across app sessions. Ensure that the app loads the saved theme

preference when reopened.

• Create a To-Do List App with SQLite

Develop a simple to-do list app using SQLite as the local database. Implement

CRUD (Create, Read, Update, Delete) functionality to allow users to add, view,

https://pub.dev/packages/shared_preferences
https://docs.flutter.dev/cookbook/persistence/key-value

110

edit, and delete tasks. Ensure that tasks are saved locally so they remain even

after the app is closed and reopened.

• Storing and Retrieving User Data with Hive

Create a Flutter app that allows users to input their profile information (e.g.,

name, age, and bio). Use Hive to store the user data locally and display it in the

app. Ensure the data is retrieved and displayed whenever the app is launched

again.

• Managing Complex Data with SQLite

Build an app that stores user data with relationships between tables (e.g., a list of

books and authors, where each book has an associated author). Use SQLite to

create two related tables and write SQL queries to retrieve books along with their

respective authors. Display the data in a structured format using ListView or

DataTable in Flutter.

• Data Encryption with Hive

Create a secure note-taking app using Hive. Encrypt the data stored in Hive to

protect sensitive information. Implement features to add, edit, and delete notes.

Ensure that data encryption is applied when storing and retrieving data from the

local storage.

• Hybrid Storage Solution

Develop a Flutter app that uses both Shared Preferences and SQLite. Store

simple key-value pairs such as login status and theme preference in Shared

Preferences, while using SQLite to manage more complex data like user profiles

and transaction histories. Explain why you chose each storage method for

different data types.

• Persistent Data with Local Notifications

Build a Flutter app that stores reminders locally using SQLite or Hive. Integrate

local notifications to remind users of their tasks based on the stored data.

Ensure that the app retrieves and updates the notification schedule whenever the

app is launched.

111

Unit-10: Working with Firebase in
Flutter

Unit Structure

10.1 Learning Objectives

10.2 Introduction

10.3 Overview of Firebase and Its Benefits for Mobile Apps

10.4 Integrating Firebase Authentication for User Login

10.5 Working with Firebase Firestore for Cloud Database

10.6 Let us sum up

10.7 Check your Progress: Possible Answers

10.8 Further Reading

10.9 Assignment

10.10 Activities

10

112

10.1 LEARNING OBJECTIVES

By the end of this unit, learner will be able to:

• Explain the core features of Firebase and how it can be used in mobile app

development.

• Identify the benefits of using Firebase services like authentication, Firestore, and

Cloud Messaging in Flutter applications.

• Set up Firebase Authentication to enable secure user login and sign-out

functionality.

• Implement various sign-in methods, including email/password authentication in a

Flutter app.

• Set up Firebase Firestore in a Flutter project and perform basic CRUD (Create,

Read, Update, Delete) operations.

• Fetch real-time data from Firestore and understand how Firestore syncs data

across devices.

• Set up Firebase Cloud Messaging to send push notifications in a Flutter app.

• Configure foreground and background message handlers and manage user

permissions for notifications.

• Combine Firebase Authentication, Firestore, and FCM to create a seamless user

experience in your mobile applications.

• Develop scalable and secure mobile apps by leveraging Firebase’s cloud

infrastructure.

10.2 INTRODUCTION

In today’s mobile application development landscape, Firebase has emerged as one

of the most powerful and versatile platforms for building scalable and feature-rich

apps. Flutter, a UI toolkit from Google for building natively compiled applications for

mobile, web, and desktop from a single codebase, pairs perfectly with Firebase. This

chapter explores how Firebase can enhance your Flutter apps, focusing on

integrating Firebase Authentication, Firestore (Firebase’s cloud-based database),

and Firebase Cloud Messaging for push notifications.

113

10.3 OVERVIEW OF FIREBASE AND ITS BENEFITS FOR
MOBILE APPS

Firebase is a comprehensive platform developed by Google to help developers build

high-quality apps quickly and easily. Firebase provides a suite of tools for

authentication, real-time database, cloud storage, analytics, crash reporting,

machine learning, and more. It reduces the need for back-end development, allowing

developers to focus on building user-facing features.

Key Benefits of Firebase for Mobile Apps:

• Real-time Database: Firebase Realtime Database and Firestore allow

developers to store and sync data across all clients in real-time.

• Scalability: Firebase services are highly scalable, enabling apps to handle a

growing number of users and data without complicated backend scaling.

• Authentication: Firebase Authentication supports various methods, including

email/password, Google, Facebook, and anonymous sign-in, making it easy to

manage user accounts.

• Analytics and Crash Reporting: Firebase provides detailed app usage and

crash analytics to help monitor app performance and user behavior.

• Cloud Messaging: Firebase Cloud Messaging (FCM) allows you to send push

notifications to engage with users and enhance user experience.

By integrating Firebase with Flutter, developers can quickly build feature-rich, cross-

platform applications with minimal back-end setup.

10.4 INTEGRATING FIREBASE AUTHENTICATION FOR
USER LOGIN

User authentication is a core part of most mobile applications, and Firebase makes it

easy to implement secure, reliable authentication in Flutter apps. Firebase

Authentication supports various sign-in methods, including email and password,

social logins (Google, Facebook, etc.), and anonymous sign-in.

Steps to Implement Firebase Authentication in Flutter:

114

1. Set up Firebase in the Flutter Project:

• Create a Firebase project on the Firebase Console.

• Add Android or iOS app credentials to Firebase by following the guided steps

in the console.

• Download and configure the google-services.json file (for Android) or

GoogleService-Info.plist (for iOS).

2. Add Firebase Authentication to Flutter: In your Flutter project’s pubspec.yaml,

add the Firebase dependencies for authentication:

dependencies:

 firebase_core: latest_version
 firebase_auth: latest_version

Run flutter pub get to install these dependencies.

3. Initialize Firebase in Your Flutter App: In the main.dart file, initialize Firebase

at the start of your app:

void main() async {
 WidgetsFlutterBinding.ensureInitialized();
 await Firebase.initializeApp();
 runApp(MyApp());
}

4. Implement Sign-in Functionality: Add a function for user sign-in with email and

password:

Future<User?> signInWithEmailAndPassword(String email, String password)
async {
 try {
 UserCredential userCredential = await FirebaseAuth.instance
 .signInWithEmailAndPassword(email: email, password: password);
 return userCredential.user;
 } catch (e) {
 print(e);
 return null;
 }
}

5. Sign-Out and User Management: Firebase also provides methods to sign out

users and manage authenticated sessions:

115

FirebaseAuth.instance.signOut();

With this setup, you can now authenticate users with Firebase Authentication,

allowing them to securely log in and out of your Flutter app.

10.5 WORKING WITH FIREBASE FIRESTORE FOR CLOUD
DATABASE

Firebase Firestore is a NoSQL, cloud-hosted database that stores and syncs data

between users in real time. Firestore offers more flexibility, scalability, and query

capabilities than Firebase’s older Realtime Database.

Steps to Use Firestore in Flutter:

1. Add Firestore to Your Flutter Project: In your pubspec.yaml, add the Firestore

dependency:

dependencies:

 cloud_firestore: latest_version

2. Creating a Firestore Instance: Firestore needs to be initialized like Firebase

Auth:

 FirebaseFirestore firestore = FirebaseFirestore.instance;

3. Adding Data to Firestore: You can store structured data in Firestore by creating

a collection and adding documents to it:

 CollectionReference users = FirebaseFirestore.instance.collection('users');

Future<void> addUser() {

 return users

 .add({

 'name': 'John Doe',

 'email': 'john@example.com',

 'age': 30

 })

 .then((value) => print("User Added"))

 .catchError((error) => print("Failed to add user: $error"));

}

116

4. Fetching Data from Firestore: To fetch data from Firestore, you can listen to

real-time changes using streams:

StreamBuilder(

 stream: FirebaseFirestore.instance.collection('users').snapshots(),

 builder: (context, AsyncSnapshot<QuerySnapshot> snapshot) {

 if (!snapshot.hasData) return Text('Loading...');

 return ListView(

 children: snapshot.data!.docs.map((document) {

 return ListTile(

 title: Text(document['name']),

 subtitle: Text(document['email']),

);

 }).toList(),

);

 },

);

Firestore makes data synchronization between devices and platforms seamless, with

the added advantage of real-time updates.

4. Implementing Push Notifications with Firebase Cloud Messaging (FCM)

Firebase Cloud Messaging (FCM) allows developers to send notifications and

messages to users, even when the app is not running. It can be used to notify users

of new content, promotions, or updates.

Steps to Implement FCM in Flutter:

1. Add FCM to Your Flutter Project: In your pubspec.yaml, add the FCM

dependency:

dependencies:

 firebase_messaging: latest_version

2. Configure FCM in Firebase Console: Set up Firebase Cloud Messaging by

enabling it in your Firebase project.

3. Initialize Firebase Messaging in Your App: Initialize Firebase Messaging in the

main.dart file:

FirebaseMessaging messaging = FirebaseMessaging.instance;

117

4. Request Permission for Notifications: Ask the user for notification permissions:

await FirebaseMessaging.instance.requestPermission(
 alert: true,
 badge: true,
 sound: true,
);

5. Handling Messages: Set up background and foreground message handlers:

FirebaseMessaging.onMessage.listen((RemoteMessage message) {
 print('Got a message whilst in the foreground!');
 print('Message data: ${message.data}');
 if (message.notification != null) {
 print('Message also contained a notification: ${message.notification}');
 }
});

6. Sending Notifications: Notifications can be sent through the Firebase Console

or programmatically using Firebase's Admin SDK.

With Firebase Cloud Messaging, you can enhance user engagement by

delivering timely push notifications to your app’s users.

Check Your Progress-1

1. What is Firebase primarily used for in mobile applications?

A) Creating user interfaces

B) Managing app analytics and hosting images

C) Providing a cloud-based backend infrastructure with real-time database,

 authentication, and notifications

D) Writing custom code for app deployment

2. Which Firebase service is used to manage user sign-in and authentication in

Flutter apps?

A) Firebase Firestore

B) Firebase Cloud Messaging

C) Firebase Analytics

D) Firebase Authentication

118

3. How can data from Firebase Firestore be fetched in real-time in a Flutter app?

A) By using FutureBuilder

B) By using StreamBuilder

C) By using ListView

D) By using TextEditingController

4. What must be added to your Flutter project to enable push notifications using

Firebase Cloud Messaging (FCM)?

A) cloud_firestore dependency

B) firebase_messaging dependency

C) firebase_analytics dependency

D) firebase_crashlytics dependency

5. Firebase Authentication allows users to sign in using both email/password and

third-party providers like Google and Facebook. (TRUE/FALSE)

6. Firestore in Firebase is a SQL-based database optimized for relational data

structures.

10.6 LET US SUM UP

Integrating Firebase into your Flutter app provides a powerful and scalable solution

for common app features such as user authentication, real-time database

management, and push notifications. By leveraging Firebase’s tools, you can

significantly reduce development time while maintaining a robust and efficient mobile

app. Whether it’s authenticating users, storing and syncing data, or delivering

messages and notifications, Firebase simplifies backend management, letting you

focus more on building a polished and engaging user experience.

10.7 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-C, 2-D, 3-B, 4-B, 5-True, 6-False

10.8 FURTHER READING

• https://docs.flutter.dev/data-and-backend/firebase

• https://firebase.google.com/docs/flutter/setup?platform=android

https://docs.flutter.dev/data-and-backend/firebase
https://firebase.google.com/docs/flutter/setup?platform=android

119

10.9 ASSIGNMENT

• What advantages does Firebase provide when developing mobile applications

compared to building your own backend infrastructure?

• Explain the steps required to integrate Firebase Authentication into a Flutter app.

What are the common sign-in methods supported by Firebase?

• How would you structure and store user data in Firebase Firestore? Can you

describe the differences between collections and documents in Firestore?

• How does real-time data synchronization work in Firebase Firestore, and how

does it benefit mobile app users?

• Describe how Firebase Cloud Messaging (FCM) can be used to send push

notifications in a Flutter app. What steps are required to configure FCM for both

Android and iOS platforms?

• What considerations should be taken when managing user permissions for push

notifications in a mobile app using FCM?

• In what scenarios would you choose to use Firebase Firestore over Firebase

Realtime Database? What are the key differences between the two?

• What security measures are provided by Firebase to ensure that user

authentication and database interactions are secure?

• How would you handle background notifications in a Flutter app with Firebase

Cloud Messaging? Can you explain the difference between foreground and

background message handling?

• Why is Firebase a good choice for cross-platform mobile development, especially

when using Flutter? What are some potential limitations or challenges you might

face?

10.10 ACTIVITIES

1. Create a new Firebase project in the Firebase Console., Add both Android and

iOS apps to the project. Download and configure the google-services.json and

GoogleService-Info.plist files.

2. Set up a login screen that includes fields for email and password. Implement user

registration functionality with Firebase Authentication. Create a logout button and

test the sign-out process.

120

3. Design a simple Firestore database structure for a To-Do list (tasks collection).

Implement CRUD (Create, Read, Update, Delete) operations for tasks. Use

Firestore snapshots to display real-time updates on the tasks list.

4. Configure Firebase Cloud Messaging in the Firebase Console. Request

permission for notifications in your Flutter app. Implement a feature to send

notifications for task reminders.

5. Create a visually appealing UI for the login, registration, and tasks screens.

Implement design elements such as buttons, text fields, and lists. Add error

handling and user feedback messages.

6. Test all functionalities of the application thoroughly (authentication, Firestore

operations, push notifications). Debug any issues that arise during testing and

document the solutions.

121

Block-4:

Advanced Flutter

122

Unit-11: Building and Deploying
Multi-Platform Applications

Unit Structure

11.1 Learning Objectives

11.2 Introduction

11.3 Understanding Flutter’s Cross-Platform Capabilities

11.4 Platform-Specific Code and Plugins

11.5 Debugging and Testing Apps on Different Platforms

11.6 Preparing Your App for Deployment

11.7 Let us sum up

11.8 Check your Progress: Possible Answers

11.9 Further Reading

11.10 Assignment

11.11 Activities

11

123

11.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• explain how Flutter supports the development of applications across multiple

platforms (iOS, Android, Web, and Desktop). They will understand the

advantages of using a single codebase for diverse platforms and how Flutter's

architecture enables consistent performance and UI across devices.

• utilize platform channels to write platform-specific code in Flutter. They will be

able to implement third-party plugins and create custom platform-specific

functionality that enhances their applications.

• debug and test their Flutter applications effectively across various platforms.

They will learn about different testing strategies and tools available in Flutter to

ensure the quality and reliability of their applications.

• prepare and deploy their Flutter applications to the Google Play Store, Apple App

Store, and the web. They will learn to navigate the guidelines and requirements

for each platform to ensure successful app launches.

• identify and address platform-specific challenges encountered during the

deployment of Flutter applications. They will learn to troubleshoot common issues

and understand best practices for optimizing their applications for different

environments.

By achieving these objectives, students will be well-prepared to develop, test, and

deploy Flutter applications that function seamlessly across multiple platforms,

leveraging Flutter's capabilities to create a cohesive user experience.

11.2 INTRODUCTION

Flutter is a powerful framework that enables developers to create applications that

work across multiple platforms, such as iOS, Android, web, and desktop, all from a

single codebase. This chapter will explore Flutter’s cross-platform capabilities, how

to write platform-specific code, techniques for debugging and testing apps on

different platforms, and the steps involved in deploying your app to Google Play

Store, Apple App Store, and the web.

124

11.3 UNDERSTANDING FLUTTER’S CROSS-PLATFORM
CAPABILITIES

Flutter offers an efficient way to develop apps that run seamlessly across multiple

platforms, including mobile (iOS, Android), web, and desktop (macOS, Windows,

Linux). The benefits of using Flutter for cross-platform development include:

• Single Codebase: You write code once, and Flutter compiles it for multiple

platforms.

• Hot Reload: Allows you to see changes instantly without losing the app's

state.

• Performance: Flutter uses its rendering engine, Skia, providing native

performance across platforms.

• Unified UI: Flutter allows you to maintain a consistent look and feel across

devices.

Supported Platforms

• Mobile: iOS and Android are fully supported platforms.

• Web: Flutter allows you to run the same code on browsers with minimal

changes.

• Desktop: You can compile Flutter applications to run on macOS, Windows,

and Linux, making it suitable for desktop applications.

11.4 PLATFORM-SPECIFIC CODE AND PLUGINS

While Flutter offers a unified codebase, there are cases where you need platform-

specific functionality. Flutter allows you to write platform-specific code or use existing

plugins to access native features of each platform.

Platform Channels

• Platform Channels: This is a mechanism provided by Flutter to communicate

between the Dart code and the native code (Java/Kotlin for Android,

Swift/Objective-C for iOS).

Example: Calling native Android or iOS APIs from Flutter using Platform Channels:

o Android code: Use Java/Kotlin to implement Android-specific

functionality.

o iOS code: Use Swift/Objective-C to interact with iOS-specific APIs.

125

Plugins

• Pre-built Plugins: Flutter has a large collection of community-contributed and

official plugins available for adding platform-specific features like camera

access, GPS, and push notifications.

• Custom Plugins: You can write your own plugins if the functionality you need

isn’t available.

Example:

import 'package:flutter/foundation.dart';
import 'package:flutter/services.dart';

class BatteryLevel {
 static const platform = MethodChannel('samples.flutter.dev/battery');

 Future<String> getBatteryLevel() async {
 try {
 final int result = await platform.invokeMethod('getBatteryLevel');
 return 'Battery level is $result%.';
 } catch (e) {
 return 'Failed to get battery level.';
 }
 }
}

11.5 DEBUGGING AND TESTING APPS ON DIFFERENT
PLATFORMS

Debugging and testing are critical to ensure that your app works seamlessly across

all platforms. Flutter provides several tools and strategies to make this process

easier.

Debugging Tools

• Flutter DevTools: A suite of performance and debugging tools included in

Flutter to help you diagnose and fix issues.

• Platform-Specific Debugging: Use Xcode for iOS and Android Studio for

Android to debug platform-specific issues.

Testing Strategies

• Unit Testing: Test individual units of code to ensure they function as

expected.

• Widget Testing: Ensure the UI behaves as expected by testing individual

widgets.

126

• Integration Testing: Test your app’s entire workflow, from start to finish, on

real devices or simulators.

Platform-Specific Testing

• iOS: Use Xcode’s simulators to test your app on different iPhone models.

• Android: Use Android Studio’s emulators to test across various Android

devices.

• Web: Test the app on different browsers and screen sizes using browser

tools.

• Desktop: Test on different OS versions (Windows, macOS, Linux) by building

and running the app natively.

11.6 PREPARING YOUR APP FOR DEPLOYMENT

Once your app is ready, the next step is deploying it to the appropriate platform(s).

This process involves preparing the app for distribution, configuring store settings,

and meeting the specific requirements of each platform.

Deploying to the Google Play Store

Steps for Android deployment:

1. Create an APK or AAB: Build the release version of your Android app using

Flutter’s build commands.

flutter build apk --release

flutter build appbundle --release # Recommended for Play Store

2. Sign the APK: Before distributing your app, it must be signed with a release

key.

3. Prepare Store Listing: Fill in all required fields like app name, description,

and images in the Play Console.

4. Upload APK/AAB: Upload the signed APK/AAB to Google Play Console.

Deploying to the Apple App Store

Steps for iOS deployment:

1. Build iOS Release: Build the release version of your iOS app using Flutter.

flutter build ios –release

2. Set up Xcode: Open the project in Xcode and ensure it meets all the App

Store requirements.

127

3. Sign and Archive: Use Xcode to archive and sign your app.

4. Upload via App Store Connect: Submit the app using Xcode or Transporter

to App Store Connect.

Deploying to the Web

Steps for web deployment:

1. Build for Web: Build the release version of your web app.

flutter build web

2. Host the App: Deploy the built web files to a web hosting service like

Firebase Hosting, AWS, or GitHub Pages.

Deploying to Desktop

Steps for desktop deployment:

1. Build for Desktop: Build the release version for the desired desktop platform.

flutter build windows # for Windows

flutter build macos # for macOS

flutter build linux # for Linux

2. Distribute the App: Package and distribute the app based on the platform

requirements (e.g., MSI for Windows, DMG for macOS).

Check Your Progress

1. Which of the following platforms does Flutter support for app development?

A) Only Android

B) Android and iOS

C) Android, iOS, Web, and Desktop

D) Only Web

2. What is the purpose of Platform Channels in Flutter?

A) To communicate between Dart and HTML

B) To access native platform APIs

C) To compile Dart code into native code

D) To manage app state

3. Which command is used to build a release version of a Flutter app for Android?

A) flutter build apk

B) flutter create apk

128

C) flutter deploy android

D) flutter run android

4. Which testing strategy focuses on the functionality of individual UI components in

Flutter?

A) Unit Testing

B) Widget Testing

C) Integration Testing

D) Performance Testing

5. In Flutter, which command can be used to build the web version of an

application?

A) flutter build web

B) flutter run web

C) flutter compile web

D) flutter deploy web

11.7 LET US SUM UP

In this chapter, we explored the capabilities of Flutter as a cross-platform framework,

handling platform-specific code, and debugging and testing on multiple platforms.

Finally, we discussed how to prepare and deploy Flutter apps for Android, iOS, the

web, and desktop platforms. Mastering these skills will allow you to build and

distribute apps efficiently across multiple ecosystems.

11.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-C) Android, iOS, Web, and Desktop

2-B) To access native platform APIs

3-A) flutter build apk

4-B) Widget Testing

5- A) flutter build web

11.9 FURTHER READING

• https://flutter.dev/multi-platform

https://flutter.dev/multi-platform

129

• https://docs.flutter.dev/deployment/android

• https://docs.flutter.dev/deployment/web

• https://docs.flutter.dev/deployment

11.10 ASSIGNMENT

1. Explain the benefits of using Flutter for cross-platform development. How does it

differ from traditional platform-specific development approaches (e.g., native

Android or iOS)?

2. Describe the role of platform channels in Flutter. Provide an example where

platform-specific code is necessary in a multi-platform application and explain

how you would implement it.

3. Outline the steps involved in preparing and deploying a Flutter application to both

the Google Play Store and the Apple App Store. What are the key differences in

the deployment process for these two platforms?

4. What are the different testing strategies available in Flutter? Discuss the

importance of widget testing and integration testing when building cross-platform

applications.

5. You are tasked with deploying a Flutter app to the web. Explain the steps

required to build the app for the web and list at least two hosting options. What

challenges might arise during this process?

11.11 ACTIVITIES

1. Build a simple app that uses platform-specific features such as accessing the

device's camera on Android and iOS.

2. Deploy your app to both the Google Play Store and Apple App Store.

3. Create a basic web version of your app and deploy it using Firebase Hosting or

any other web hosting service.

https://docs.flutter.dev/deployment/android
https://docs.flutter.dev/deployment/web
https://docs.flutter.dev/deployment

130

Unit-12: Performance
Optimization in Flutter

Unit Structure

12.1 Learning Objectives

12.2 Introduction

12.3 Techniques for Optimizing Flutter Apps

12.4 Best Practices for Smooth Animations and Rendering

12.5 Profiling and Analyzing App Performance Using Flutter DevTools

12.6 Optimizing Network and API Calls for Better Performance

12.7 Let us sum up

12.8 Check your Progress: Possible Answers

12.9 Further Reading

12.10 Assignment

12.11 Activities

12

131

12.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Explain why performance optimization is critical in mobile applications.

• Identify the factors that contribute to a positive user experience and how

performance impacts user engagement.

• Describe the concept of widget rebuilding in Flutter and its implications for

performance.

• Demonstrate the use of const constructors to create immutable widgets.

• Apply the ValueListenableBuilder to update specific parts of the UI without

unnecessary rebuilds.

• Utilize scoped setState calls to limit widget rebuilds to only those that require

updates

• Differentiate between various types of Flutter widgets and their performance

characteristics.

• Implement ListView.builder for rendering large lists efficiently.

• Use IndexedStack to switch between widgets while maintaining their state.

• Analyze the structure of the build method to minimize its complexity.

• Apply techniques to offload heavy computations from the build method using

compute() or asynchronous calls.

• Employ RepaintBoundary to isolate parts of the widget tree that require frequent

updates.

• Identify best practices for creating smooth animations and rendering in Flutter.

• Utilize Flutter’s animation library components, such as AnimatedBuilder and

AnimatedContainer.

• Monitor frame rates to ensure animations run at 60 fps and diagnose frame drops

using performance tools.

• Familiarize with the various tools available in Flutter DevTools for performance

analysis.

• Interpret the data provided by the Flutter Inspector to identify inefficiencies in the

widget tree.

• Use the performance overlay and timeline view to assess frame rendering times

and identify bottlenecks.

132

• Conduct memory profiling to detect memory leaks and optimize memory usage.

• Implement asynchronous programming to prevent blocking the UI thread during

network calls.

• Develop caching strategies to minimize redundant API calls and improve data

retrieval times.

• Apply best practices for batching API requests to reduce network overhead.

• Choose efficient data formats and consider data compression techniques to

enhance network performance.

12.2 INTRODUCTION

Performance is a critical factor in mobile app development, as it greatly influences

user satisfaction and engagement. Flutter, with its rich set of features and flexibility,

offers various ways to optimize application performance. In this chapter, we will

explore essential techniques for optimizing Flutter apps, focusing on minimizing

rebuilds, enhancing animations, profiling performance, and optimizing network and

API calls. By the end of this chapter, you will have a solid understanding of how to

create high-performance Flutter applications.

12.3 TECHNIQUES FOR OPTIMIZING FLUTTER APPS

Minimizing Rebuilds

Unnecessary widget rebuilds can lead to performance bottlenecks in Flutter

applications. Flutter rebuilds a widget whenever its parent widget is rebuilt. To

minimize this:

• Use const Widgets: Marking a widget as const tells Flutter that it will not

change, preventing it from rebuilding unnecessarily.

const Text('Hello, World!'); // This widget won't rebuild

• ValueListenableBuilder: This widget listens to a ValueNotifier and only rebuilds

when the value changes. This is an efficient way to update specific parts of the

UI.

133

ValueListenableBuilder<int>(
 valueListenable: myValueNotifier,
 builder: (context, value, child) {
 return Text('Value: $value');
 },
);

Scoped setState Calls: Limit the scope of setState() to specific widgets that need to

be rebuilt rather than calling it at a higher level in the widget tree.

Efficient Widget Usage

Choosing the right widget can significantly improve performance:

• Use ListView.builder: For lists with many items, ListView.builder builds only the

visible items, enhancing performance by reusing widgets.

• IndexedStack: When switching between multiple widgets, use IndexedStack to

maintain the state of each widget while only displaying the active one.

Optimize Build Method

The build method is called frequently, so minimizing its complexity is essential:

• Avoid Heavy Computation: Move heavy computations out of the build method.

Use compute() to run tasks in a separate isolate if needed.

• Use RepaintBoundary: This widget can help improve performance by isolating

parts of the widget tree that need frequent updates from the rest of the UI.

12.4 BEST PRACTICES FOR SMOOTH ANIMATIONS AND
RENDERING

Animations play a vital role in user experience. To ensure smooth animations:

Leverage the Animation Library

Utilize Flutter’s animation library, which includes:

• AnimatedBuilder: This widget allows you to efficiently animate properties

without having to write boilerplate code.

134

• AnimatedContainer: Use this for simple animations that involve size, padding,

color, etc. It automatically animates changes to these properties.

Optimize Animation Performance

• Avoid Complex Calculations: Keep animations lightweight by avoiding complex

calculations in the animation loop.

• Profile Animations: Use the performance overlay to identify dropped frames and

performance issues during animations.

Manage Frame Rates

• Ensure animations are running at 60 frames per second (fps). Profiling your app

can help identify and address frame drops, ensuring a fluid experience.

12.5 PROFILING AND ANALYZING APP PERFORMANCE
USING FLUTTER DEVTOOLS

Profiling is essential for identifying performance bottlenecks. Flutter provides

DevTools, a suite of tools for performance analysis:

Flutter Inspector

The Flutter Inspector allows developers to visualize the widget tree, enabling them to

identify inefficiencies and unnecessary rebuilds.

Performance Overlay

Enabling the performance overlay displays information about the frame rendering

times, helping to identify if your app is dropping frames.

Timeline View

The timeline view provides detailed insights into frame rendering times, build

durations, and event handling. This can help developers track where time is being

spent in their app.

Memory Profiling

Memory profiling tools in Flutter DevTools can help identify memory leaks and

optimize memory usage. Keep track of object allocation and deallocation to ensure

efficient memory management.

135

12.6 OPTIMIZING NETWORK AND API CALLS FOR
BETTER PERFORMANCE

Network calls can greatly affect application performance. Here’s how to optimize

them:

Use Asynchronous Calls

Always perform network calls asynchronously to prevent blocking the UI thread. Use

async/await for non-blocking calls:

Future<void> fetchData() async {
 final response = await http.get(Uri.parse('https://example.com/data'));
 // Process response
}

Implement Caching Strategies

Implement caching strategies to reduce redundant API calls. Use packages like

shared_preferences or hive for local storage. This can significantly improve

performance by serving cached data instead of making network requests.

Batch API Requests

If your application requires multiple API calls, batch them together if possible. This

reduces the number of network requests and can lead to improved performance.

Efficient Data Formats

Choose lightweight data formats like JSON instead of XML. Consider compressing

the data sent over the network to reduce load times.

Check Your Progress

1. What is the primary benefit of using const constructors for widgets in Flutter?

A) They allow for animations to run smoother.

B) They prevent unnecessary rebuilds of immutable widgets.

C) They reduce the size of the app.

D) They enable the use of platform-specific code.

2. Which widget is best suited for rendering a large list of items efficiently in Flutter?

136

A) ListView B) ListView.builder C) Column D) GridView

3. What tool can you use in Flutter to profile the performance of your application?

A) Flutter Inspector B) Android Studio C) Visual Studio Code D) DartPad

4. Which of the following is a technique to reduce frame drops during animations in

Flutter?

A) Using heavy computation in the animation loop.

B) Ensuring animations run at 60 frames per second (fps).

C) Ignoring the performance overlay.

D) Using the same widget for all animations.

5. What is one method to optimize network calls in a Flutter application?

A) Making all API calls synchronous.

B) Using caching strategies to reduce redundant requests.

C) Avoiding asynchronous programming altogether.

D) Increasing the number of API calls made.

12.7 LET US SUM UP

Performance optimization is a crucial aspect of Flutter app development. By

employing techniques to minimize rebuilds, enhance animations, and efficiently

manage network calls, developers can create responsive and high-performing

applications. Regular profiling using Flutter DevTools will ensure that any

performance bottlenecks are identified and resolved early in the development

process. With these strategies, developers can provide an exceptional user

experience that meets the demands of modern mobile applications.

12.8 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-B) They prevent unnecessary rebuilds of immutable widgets.

2- B) ListView.builder 3-A) Flutter Inspector

4-B) Ensuring animations run at 60 frames per second (fps).

5-B) Using caching strategies to reduce redundant requests.

137

12.9 FURTHER READING

• https://docs.flutter.dev/perf/best-practices

• https://docs.flutter.dev/perf

• https://docs.flutter.dev/perf/rendering-performance

• https://docs.flutter.dev/perf/ui-performance

12.10 ASSIGNMENT

1. Explain the concept of widget rebuilding in Flutter. How does it impact the

performance of an application? Provide examples of when a widget might need to

rebuild.

2. Discuss the best practices for creating smooth animations in Flutter. What

techniques can you use to ensure that your animations run at 60 frames per

second?

3. Describe how you would use Flutter DevTools to profile the performance of an

application. What specific metrics or tools within DevTools would you focus on,

and why?

4. Consider a scenario where your Flutter application makes multiple network calls

to an API. What strategies can you implement to optimize these calls for better

performance? Discuss the advantages of each strategy.

5. Reflect on the role of the build method in Flutter. What are some common pitfalls

that developers might encounter when writing the build method, and how can

they mitigate these issues to improve performance?

12.11 ACTIVITIES

Activity: Widget Optimization Challenge

Objective: To practice identifying and optimizing widget rebuilds in a Flutter

application.

Instructions:

1. Create a Sample Application: Build a simple Flutter application that includes a

list of items (e.g., a list of names or products). Use ListView to display the items.

https://docs.flutter.dev/perf/best-practices
https://docs.flutter.dev/perf
https://docs.flutter.dev/perf/rendering-performance
https://docs.flutter.dev/perf/ui-performance

138

2. Identify Rebuilds: Modify the application to introduce a stateful widget that alters

some of the items in the list. Implement a setState() method that updates the list

based on user interaction (e.g., adding or removing items).

3. Profile Performance: Use Flutter DevTools to profile the performance of the

application. Pay attention to the performance overlay and look for any dropped

frames.

4. Optimize the Code:

o Identify areas where unnecessary widget rebuilds occur and refactor the

code to use const widgets or ValueListenableBuilder where applicable.

o Re-test the performance after making changes.

5. Presentation: Prepare a short presentation (5-10 minutes) to share your

findings, focusing on how you identified the performance issues and what

optimizations you implemented.

139

Unit-13: Custom Widgets and
Plugins

Unit Structure

13.1 Learning Objectives

13.2 Introduction

13.3 Custom Widgets

13.4 Customizing Widgets Using Composition

13.5 Understanding Widget Lifecycle

13.6 Creating Plugins in Flutter

13.7 Publishing and Using Plugins

13.8 Let us sum up

13.9 Check your Progress: Possible Answers

13.10 Further Reading

13.11 Assignment

13.12 Activities

13

140

13.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Create custom Stateless and Stateful widgets tailored to specific design

requirements.

• Leverage composition to combine existing widgets and build complex UI

components.

• Grasp the lifecycle of a StatefulWidget and manage state efficiently using

initState(), setState(), and dispose() methods.

• Implement stateful behaviors in widgets to handle dynamic content and

interactions.

• Understand the architecture of Flutter plugins and the role of platform

channels for communication between Dart and native code.

• Build basic custom plugins to access platform-specific features (e.g., camera,

battery status) on both Android and iOS.

• Implement and use MethodChannels for two-way communication between

Flutter and platform-specific APIs.

• Differentiate between MethodChannel, EventChannel, and

BasicMessageChannel, and know when to use each type of channel.

• Develop reusable Flutter plugins for personal projects or the community.

• Understand the process of packaging and publishing a plugin to pub.dev, making

it available for use by other developers.

• Optimize custom widgets for reusability and performance.

• Ensure that plugins are cross-platform compatible and follow Flutter’s guidelines

for native code integration.

13.2 INTRODUCTION

 In Flutter, everything is a widget. From buttons to complex layouts, all visual

elements are widgets. However, as applications grow, the need for custom,

reusable, and efficient widgets becomes essential. In this chapter, we’ll dive into

advanced techniques for building custom widgets and creating plugins to extend

Flutter’s functionality beyond what’s available out of the box.

141

13.3 CUSTOM WIDGETS

Flutter provides a vast library of pre-built widgets that cover most common use

cases. However, real-world applications often require bespoke visual elements and

behaviors. Custom widgets offer flexibility, enabling developers to create reusable

components with custom styling, animations, and interactions.

There are two main types of custom widgets in Flutter:

• StatelessWidget: A widget that doesn't change its state over time.

• StatefulWidget: A widget that maintains some state, which can change and

trigger re-renders.

Building Custom Stateless Widgets

Let’s start by creating a custom StatelessWidget. This type of widget is best suited

for static content or content that doesn't need to change during the app’s lifecycle.

class CustomButton extends StatelessWidget {
 final String label;
 final VoidCallback onPressed;

 const CustomButton({required this.label, required this.onPressed});

 @override
 Widget build(BuildContext context) {
 return ElevatedButton(
 onPressed: onPressed,
 child: Text(label),
 style: ElevatedButton.styleFrom(
 primary: Colors.blue, // Custom color
 padding: EdgeInsets.symmetric(horizontal: 20, vertical: 15),
 textStyle: TextStyle(fontSize: 18),
),
);
 }
}

In this example, CustomButton takes a label and an onPressed callback. It allows

developers to easily reuse this widget throughout their application.

Building Custom Stateful Widgets

Now, let’s create a custom StatefulWidget. This is useful for widgets that need to

manage internal state, such as form inputs or toggle switches.

class ToggleSwitch extends StatefulWidget {

142

 final bool initialValue;
 final ValueChanged<bool> onChanged;

 const ToggleSwitch({required this.initialValue, required this.onChanged});

 @override
 _ToggleSwitchState createState() => _ToggleSwitchState();
}

class _ToggleSwitchState extends State<ToggleSwitch> {
 late bool isActive;

 @override
 void initState() {
 super.initState();
 isActive = widget.initialValue;
 }

 @override
 Widget build(BuildContext context) {
 return Switch(
 value: isActive,
 onChanged: (value) {
 setState(() {
 isActive = value;
 });
 widget.onChanged(value);
 },
);
 }
}

Here, ToggleSwitch keeps track of its internal state (isActive). It can be reused

anywhere that needs a custom toggle switch with additional behaviors, such as

callbacks when the switch is toggled.

13.4 CUSTOMIZING WIDGETS USING COMPOSITION

Instead of subclassing a widget, Flutter encourages composition — creating new

widgets by combining existing ones. This technique is more flexible, reusable, and

fits well within Flutter's declarative UI framework.

For example, you can compose widgets to build a more complex UI component:

class UserProfileCard extends StatelessWidget {

143

 final String userName;
 final String imageUrl;

 const UserProfileCard({required this.userName, required this.imageUrl});

 @override
 Widget build(BuildContext context) {
 return Card(
 elevation: 4,
 child: Column(
 children: [
 Image.network(imageUrl, width: 100, height: 100),
 SizedBox(height: 10),
 Text(userName, style: TextStyle(fontSize: 20, fontWeight: FontWeight.bold)),
 SizedBox(height: 10),
],
),
);
 }
}

This UserProfileCard combines several Flutter widgets (like Card, Column, and Text)

to form a reusable UI component.

13.5 UNDERSTANDING WIDGET LIFECYCLE

For advanced Flutter development, it's essential to understand the widget lifecycle,

especially for StatefulWidgets.

The key lifecycle methods for StatefulWidget include:

• initState(): Called once when the widget is inserted into the widget tree. It's

commonly used to initialize state.

• build(): Called every time the widget is rendered, based on the current state.

• dispose(): Called when the widget is removed from the tree permanently.

This is the place to clean up resources like streams or controllers.

Example using lifecycle methods:

class TimerWidget extends StatefulWidget {
 @override
 _TimerWidgetState createState() => _TimerWidgetState();
}

class _TimerWidgetState extends State<TimerWidget> {
 late Timer _timer;
 int _seconds = 0;

144

 @override
 void initState() {
 super.initState();
 _timer = Timer.periodic(Duration(seconds: 1), (Timer t) {
 setState(() {
 _seconds++;
 });
 });
 }

 @override
 void dispose() {
 _timer.cancel();
 super.dispose();
 }

 @override
 Widget build(BuildContext context) {
 return Text('Seconds elapsed: $_seconds');
 }
}

This widget starts a timer in initState() and cleans it up in dispose() to avoid memory

leaks.

13.6 CREATING PLUGINS IN FLUTTER

While Flutter’s widget library covers most use cases, sometimes you need to interact

with platform-specific features like the camera, GPS, or file system. Plugins

provide a way to extend Flutter’s functionality by writing platform-specific code for

iOS and Android.

Plugin Architecture

Flutter plugins are structured in a way that allows communication between Dart and

platform-specific code (Java/Kotlin for Android, Objective-C/Swift for iOS). This is

achieved through platform channels.

A platform channel allows you to send messages between Dart and the host platform

(Android or iOS) using a method call mechanism.

145

Key Concepts:

• MethodChannel: Used to communicate with native code.

• EventChannel: Used to listen to continuous streams of data (e.g., sensor data).

• BasicMessageChannel: Used for binary or string messages.

Creating a Basic Plugin

Here’s a simplified example of how you might create a plugin that interacts with the

native battery level on both Android and iOS.

class BatteryLevel {
 static const MethodChannel _channel = MethodChannel('battery');

 static Future<int> getBatteryLevel() async {
 final int batteryLevel = await _channel.invokeMethod('getBatteryLevel');
 return batteryLevel;
 }
}

Android Native Code (Kotlin):

class MainActivity: FlutterActivity() {
 private val CHANNEL = "battery"

 override fun configureFlutterEngine(flutterEngine: FlutterEngine) {
 super.configureFlutterEngine(flutterEngine)

 MethodChannel(flutterEngine.dartExecutor.binaryMessenger,
CHANNEL).setMethodCallHandler { call, result ->
 if (call.method == "getBatteryLevel") {
 val batteryLevel = getBatteryLevel()

 if (batteryLevel != -1) {
 result.success(batteryLevel)
 } else {
 result.error("UNAVAILABLE", "Battery level not available.", null)
 }
 } else {
 result.notImplemented()
 }
 }
 }

 private fun getBatteryLevel(): Int {
 val batteryLevel: Int
 val batteryIntent = ContextCompat.getSystemService(this,
BatteryManager::class.java)

146

 batteryLevel =
batteryIntent?.getIntProperty(BatteryManager.BATTERY_PROPERTY_CAPACITY)
?: -1
 return batteryLevel
 }
}

iOS Native Code (Swift):

import Flutter
import UIKit

public class SwiftBatteryPlugin: NSObject, FlutterPlugin {
 public static func register(with registrar: FlutterPluginRegistrar) {
 let channel = FlutterMethodChannel(name: "battery", binaryMessenger:
registrar.messenger())
 let instance = SwiftBatteryPlugin()
 registrar.addMethodCallDelegate(instance, channel: channel)
 }

 public func handle(_ call: FlutterMethodCall, result: @escaping FlutterResult) {
 if (call.method == "getBatteryLevel") {
 result(getBatteryLevel())
 } else {
 result(FlutterMethodNotImplemented)
 }
 }

 private func getBatteryLevel() -> Int {
 let device = UIDevice.current
 device.isBatteryMonitoringEnabled = true
 return Int(device.batteryLevel * 100)
 }
}

13.7 PUBLISHING AND USING PLUGINS

Once you've created your plugin, you can publish it to pub.dev, Flutter's official

package repository, or use it locally in your project. Publishing a plugin makes it

accessible to the Flutter community, and you can also benefit from contributions to

improve your plugin.

To publish, you need to:

1. Add metadata (name, description, etc.) to your pubspec.yaml.

2. Ensure that your plugin works correctly on both Android and iOS.

3. Run flutter packages pub publish to upload the package.

147

Check Your Progress

1. What is the primary difference between a StatelessWidget and a StatefulWidget

in Flutter?

A) StatelessWidget does not have a build() method, while StatefulWidget does.

B) StatelessWidget does not manage state, while StatefulWidget manages

mutable state.

C) StatelessWidget can change its state over time, while StatefulWidget cannot.

D) StatefulWidget is used for performance optimization, while StatelessWidget is

not.

2. Which lifecycle method in a StatefulWidget is used to perform one-time

initialization tasks?

A) dispose()

B) build()

C) initState()

D) setState()

3. In Flutter, what is the best practice for creating complex UI components from

smaller widgets?

A) Extending a single widget class for all UI components.

B) Using the setState() method extensively.

C) Subclassing existing widgets for every new component.

D) Composing existing widgets to build new complex widgets.

4. Which of the following Flutter plugins is designed to listen to continuous streams

of data, like sensor input?

A) MethodChannel

B) EventChannel

C) BasicMessageChannel

D) PlatformChannel

5. What is the purpose of the MethodChannel in Flutter plugins?

A) To communicate between Flutter and platform-specific code using method

calls.

B) To handle continuous data streams between Flutter and native code.

C) To send binary data between Flutter and platform code.

D) To define widget lifecycle methods.

148

13.8 LET US SUM UP

Mastering custom widgets and plugins in Flutter allows developers to build highly

customized, performant applications that cater to any design or functionality

requirement. Custom widgets enable flexibility and reusability, while plugins extend

the power of Flutter to platform-specific features, bridging the gap between

13.9 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-B, 2-C 3-D 4-B 5-A

13.10 FURTHER READING

• https://docs.flutter.dev/packages-and-plugins/developing-packages

• https://docs.flutter.dev/ui/widgets

• https://docs.flutterflow.io/concepts/custom-code/custom-widgets/

• https://docs.flutter.dev/packages-and-plugins

13.11 ASSIGNMENT

• What are the benefits of using custom widgets in Flutter, and how can you ensure

that they are reusable across different parts of an application?

• When would you prefer creating a custom StatefulWidget over a

StatelessWidget? Provide an example scenario.

• Explain the concept of widget composition in Flutter. How does it differ from

subclassing? Provide a real-world example of how composition improves

flexibility and maintainability in app development.

• Describe the lifecycle of a StatefulWidget in Flutter. What happens if you forget to

override the dispose() method in a widget that manages resources such as

streams or timers?

• Imagine you need to access the device's camera functionality for an app. What

steps would you follow to create a custom Flutter plugin that interacts with the

platform’s native camera API?

• Why is it important to ensure that plugins are compatible with both Android and

iOS? What are some potential challenges developers face in maintaining cross-

platform compatibility?

https://docs.flutter.dev/packages-and-plugins/developing-packages
https://docs.flutter.dev/ui/widgets
https://docs.flutterflow.io/concepts/custom-code/custom-widgets/
https://docs.flutter.dev/packages-and-plugins

149

• Discuss how platform channels work in Flutter. How would you use a

MethodChannel to invoke a native function that retrieves the device's GPS

coordinates? What considerations must you keep in mind when communicating

between Dart and native code?

13.12 ACTIVITIES

• Create a Battery Level Display widget that retrieves and shows the device's

current battery level using platform-specific native code.

150

Unit-14: Testing in Flutter

Unit Structure

14.1 Learning Objectives

14.2 Introduction

14.3 Types of Testing in Flutter

14.4 Unit Testing in Flutter

14.5 Widget Testing in Flutter

14.6 Integration Testing in Flutter

14.7 Automated Testing Workflow in Flutter

14.8 Let us sum up

14.9 Check your Progress: Possible Answers

14.10 Further Reading

14.11 Assignment

14.12 Activities

14

151

14.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Distinguish between unit tests, widget tests, and integration tests, and

understand the purpose of each type.

• Know when to apply each type of test to ensure comprehensive coverage for

your Flutter applications.

• Write unit tests to verify the correctness of individual functions or classes in

isolation.

• Use the flutter_test package to test logic and edge cases in your code.

• Run unit tests and interpret the results to improve code reliability.

• Write widget tests to validate the UI and interactions of individual widgets.

• Utilize the WidgetTester class to simulate user interactions like taps and verify

that widgets behave as expected.

• Write integration tests to simulate real-world user behavior and interactions

across multiple screens and widgets.

• Use the integration_test package to automate end-to-end testing on devices and

emulators.

• Set up an automated CI pipeline to run tests on every commit or pull request,

ensuring that your app’s code remains stable as it evolves.

• Integrate testing into platforms like GitHub Actions, CircleCI, or other CI services.

• Apply best practices for writing clear, maintainable tests across all levels (unit,

widget, and integration).

• Mock external dependencies when necessary to isolate tests and avoid reliance

on real-world services.

• Optimize test performance to ensure that your testing process is efficient and

scalable.

14.2 INTRODUCTION

Testing is an essential aspect of software development that ensures the reliability,

correctness, and performance of applications. In Flutter, testing is made simple and

comprehensive, providing several tools and methodologies to validate the

functionality of your app at multiple levels. This chapter will guide you through the

152

different types of testing in Flutter and demonstrate best practices to maintain a

robust, high-quality application.

14.3 TYPES OF TESTING IN FLUTTER

Testing in Flutter can be categorized into three main types:

• Unit Testing: Testing individual units of code (e.g., a single function or class)

in isolation.

• Widget Testing: Testing individual widgets to ensure they render correctly

and behave as expected in different scenarios.

• Integration Testing: Testing the app as a whole to simulate user behavior

and interactions across multiple widgets and screens.

Each type serves a different purpose in ensuring your app’s functionality, reliability,

and performance.

14.4 UNIT TESTING IN FLUTTER

What is Unit Testing?

Unit tests validate the functionality of individual units of code, such as methods or

classes, ensuring that they behave correctly under various conditions. These tests

are fast, isolated, and form the foundation of your test suite, allowing you to verify the

smallest parts of your app's logic.

Writing Unit Tests

Flutter provides the flutter_test package, which includes tools for writing unit tests.

Here's a basic example of a unit test for a function that adds two numbers:

// math_functions.dart
int add(int a, int b) {
 return a + b;
}

// math_functions_test.dart
import 'package:flutter_test/flutter_test.dart';
import 'math_functions.dart';

153

void main() {
 test('Addition of two numbers', () {
 expect(add(2, 3), 5);
 });
}

Running Unit Tests

To run the unit test, use the following command in the terminal:

flutter test

This will run all the tests in the test directory and output the results in the console.

Best Practices for Unit Testing

• Isolate Logic: Ensure that each test focuses on a small piece of functionality.

Avoid dependencies on external systems like APIs or databases.

• Mock External Dependencies: Use mocking frameworks like mockito to replace

real objects with mock ones, simulating their behavior without relying on the

actual implementation.

• Test Edge Cases: Write tests for typical cases and also test edge cases (e.g.,

empty inputs, null values, etc.) to improve coverage.

14.5 WIDGET TESTING IN FLUTTER

What is Widget Testing?

Widget tests (also called component tests) check the UI and interactions of individual

widgets. These tests ensure that a widget renders correctly and responds to user

actions (like tapping a button or entering text) as expected. Widget testing provides a

middle ground between unit testing and integration testing.

Writing Widget Tests

Here’s an example of a widget test for a simple counter app:

// counter.dart
class Counter extends StatefulWidget {
 @override
 _CounterState createState() => _CounterState();

154

}

class _CounterState extends State<Counter> {
 int _count = 0;

 void _increment() {
 setState(() {
 _count++;
 });
 }

 @override
 Widget build(BuildContext context) {
 return Column(
 children: [
 Text('Count: $_count'),
 ElevatedButton(
 onPressed: _increment,
 child: Text('Increment'),
),
],
);
 }
}

// counter_test.dart
import 'package:flutter/material.dart';
import 'package:flutter_test/flutter_test.dart';
import 'counter.dart';

void main() {
 testWidgets('Counter increments when button is pressed', (WidgetTester tester)
async {
 // Build the widget
 await tester.pumpWidget(MaterialApp(home: Counter()));

 // Verify initial counter value is 0
 expect(find.text('Count: 0'), findsOneWidget);

 // Tap the increment button
 await tester.tap(find.byType(ElevatedButton));
 await tester.pump(); // Rebuild the widget

 // Verify the counter value has incremented
 expect(find.text('Count: 1'), findsOneWidget);
 });
}

155

Understanding the WidgetTester

The WidgetTester object simulates user interactions and allows you to perform

actions like:

• pumpWidget(): Builds the widget and places it in the test environment.

• tap(): Simulates tapping on a widget (like a button).

• pump(): Rebuilds the widget after a state change.

Running Widget Tests

Run widget tests using the same command as unit tests:

flutter test

Best Practices for Widget Testing

• Test UI and Behavior: Ensure that widgets not only display correctly but also

behave as expected when interacted with.

• Use Keys for Finding Widgets: Assign keys to widgets when necessary to

make them easier to find in tests, especially for widgets with similar content.

• Simulate Different Scenarios: Test how the widget responds to different

conditions, such as varying screen sizes or input values.

14.6 INTEGRATION TESTING IN FLUTTER

What is Integration Testing?

Integration tests validate the app's behavior as a whole, simulating real-world user

interactions. These tests cover multiple widgets and screens, ensuring that they work

together correctly.

Integration tests are often more complex and slower to run than unit or widget tests,

but they are crucial for validating the overall app experience.

Writing Integration Tests

Flutter provides the integration_test package for writing and running integration tests.

Here’s an example of an integration test that tests the same counter app:

// integration_test/counter_integration_test.dart
import 'package:flutter_test/flutter_test.dart';

156

import 'package:integration_test/integration_test.dart';
import 'package:flutter/material.dart';
import 'package:my_app/counter.dart';

void main() {
 IntegrationTestWidgetsFlutterBinding.ensureInitialized();

 testWidgets('Counter increments in integration test', (WidgetTester tester) async {
 await tester.pumpWidget(MaterialApp(home: Counter()));

 // Verify initial count
 expect(find.text('Count: 0'), findsOneWidget);

 // Simulate tap
 await tester.tap(find.byType(ElevatedButton));
 await tester.pump();

 // Verify updated count
 expect(find.text('Count: 1'), findsOneWidget);
 });
}

Running Integration Tests

Integration tests are executed differently than unit and widget tests. You’ll need to

use the following command to run integration tests on an actual device or emulator:

flutter test integration_test/counter_integration_test.dart

Alternatively, you can use the following command to run all tests in the

integration_test folder:

flutter test integration_test

Best Practices for Integration Testing

• Test Critical User Flows: Focus on testing critical user journeys (like logging in,

making a purchase, etc.), where failures would significantly impact the app's

usability.

• Use Mock Data: When possible, mock external services (like APIs) to isolate the

test environment and avoid relying on external systems.

• Limit Integration Tests: Since they can be slow, limit the number of integration

tests by focusing only on the most important flows.

157

14.7 AUTOMATED TESTING WORKFLOW IN FLUTTER

Test Automation and Continuous Integration (CI)

Automating tests and integrating them into a Continuous Integration (CI) pipeline

ensures that code is consistently tested as it evolves. Popular CI platforms like

GitHub Actions, CircleCI, and Travis CI support Flutter testing.

Here’s a simple configuration for GitHub Actions to automate testing:

name: Flutter Test

on: [push, pull_request]

jobs:

 test:

 runs-on: ubuntu-latest

 steps:

 - uses: actions/checkout@v2

 - uses: subosito/flutter-action@v2

 with:

 flutter-version: '2.5.0'

 - run: flutter pub get

 - run: flutter test

This YAML file defines a CI workflow that runs Flutter tests automatically whenever

you push code or submit a pull request.

Continuous Integration Best Practices

• Run Tests on Every Commit: Ensure that your test suite is automatically

triggered for every commit or pull request.

• Monitor Test Performance: Pay attention to how long tests take to run. Long-

running tests might slow down your development process.

• Fail Early, Fail Fast: Ensure that failing tests provide quick feedback, allowing

you to fix bugs or issues before they propagate.

158

Check Your Progress

1. What is the primary purpose of unit testing in Flutter?

A) To test the entire user interface

B) To validate individual units of code in isolation

C) To test interactions between different widgets

D) To simulate real-world user behavior across screens

2. Which tool is used for simulating user interactions in Flutter widget tests?

A) WidgetBuilder

B) IntegrationTester

C) UnitTester

D) WidgetTester

3. In integration testing, what does the pump() method do in the WidgetTester

class?

A) Simulates user interaction with the widget

B) Verifies the test result

C) Rebuilds the widget after a state change

D) Initializes the widget tree

4. What is the recommended practice for testing widgets that depend on external

services like APIs?

A) Avoid testing those widgets altogether

B) Use the real service during the test

C) Use mock services or mock data

D) Skip testing the widgets for external services

5. Which of the following commands runs all the tests in the test directory of a

Flutter project?

A) flutter run test

B) flutter analyze

C) flutter test

D) flutter check

6. Integration tests in Flutter are faster to run than unit tests. (True/False)

7. In Flutter, MethodChannel is primarily used for communicating between Dart and

native platform code. (True/False)

159

14.8 LET US SUM UP

Testing is a vital part of Flutter app development, ensuring that your code is correct,

stable, and ready for production. By integrating unit tests, widget tests, and

integration tests into your workflow, you can build a strong test suite that validates

the functionality of individual components, the behavior of widgets, and the app's

performance as a whole.

Additionally, by automating your tests using a continuous integration pipeline, you

can ensure that your app remains reliable as it grows and evolves. The key to

successful testing lies in balancing test types, focusing on critical flows, and

maintaining a fast and efficient test suite.

With the right testing strategy in place, you can ensure that your Flutter apps are

bug-free, performant, and ready to provide a seamless user experience

14.9 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1-B) To validate individual units of code in isolation

2-D) WidgetTester

3-C) Rebuilds the widget after a state change

4- C) Use mock services or mock data

5-C) flutter test 6-False 7-True

14.10 FURTHER READING

• https://docs.flutter.dev/testing/overview

• https://docs.flutter.dev/cookbook/testing/unit/introduction

• https://docs.flutter.dev/cookbook/testing/integration/introduction

• https://docs.flutter.dev/cookbook/testing/widget/introduction

14.11 ASSIGNMENT

1. What is the difference between unit testing and widget testing in Flutter? Can you

provide an example where each type would be most appropriate?

2. Explain how WidgetTester is used to simulate user interactions in a widget test.

Why is it important to use pump() after certain actions in widget tests?

https://docs.flutter.dev/testing/overview
https://docs.flutter.dev/cookbook/testing/unit/introduction
https://docs.flutter.dev/cookbook/testing/integration/introduction
https://docs.flutter.dev/cookbook/testing/widget/introduction

160

3. When should you consider using integration tests in a Flutter app? Provide an

example of a scenario where integration testing would be necessary.

4. Describe the role of mock objects in testing Flutter applications. How do they

improve the reliability of tests, particularly when dealing with external

dependencies like APIs?

5. What are some challenges you might face when writing integration tests, and

how can you overcome them to ensure your tests remain efficient and effective?

6. Why is it important to include testing as part of your Continuous Integration (CI)

workflow? How does this help in maintaining the quality of your Flutter application

over time?

7. Can you think of a real-world scenario where testing only at the unit level would

be insufficient? What other levels of testing should be added to ensure the app

works as expected?

14.12 ACTIVITIES

1. Practice writing unit and widget tests for a basic Flutter application.

2. Mocking External Services

3. Setting up automated testing in a CI environment.

161

Unit-15: Flutter for the Web and
Desktop

Unit Structure

15.1 Learning Objectives

15.2 Introduction

15.3 Flutter for Web and Desktop

15.4 Getting Started with Flutter for Web

15.5 Building Desktop Applications with Flutter

15.6 Best Practices for Flutter Web and Desktop Development

15.7 Deployment and Publishing

15.8 Let us sum up

15.9 Check your Progress: Possible Answers

15.10 Further Reading

15.11 Assignment

15.12 Activities

15

162

15.1 LEARNING OBJECTIVE

After studying this unit student should be able to:

• Identify the advantages of using Flutter to build applications for web and desktop

platforms, including a single codebase and rich UI components.

• Configure the Flutter SDK for web and desktop development, ensuring all

necessary tools and settings are in place for creating cross-platform applications.

• Build a basic Flutter web application and run it in a web browser, demonstrating

knowledge of Flutter's web capabilities.

• Use MediaQuery, LayoutBuilder, and responsive widgets to create adaptable

user interfaces that work seamlessly across different screen sizes and

orientations on the web.

• Implement named routes and manage navigation in Flutter web applications,

enhancing user experience with intuitive page transitions.

• Create a Flutter desktop application for Windows, macOS, or Linux, and run it in

a native environment.

• Incorporate desktop-specific functionalities such as window management and

native API access to enhance the user experience in desktop applications.

• Implement performance optimization strategies and accessibility features to

ensure applications run efficiently and are usable by a diverse audience.

• Prepare and deploy Flutter web applications to web servers and package desktop

applications for distribution on different platforms.

• Recognize the importance of keeping up with the latest updates and best

practices in the Flutter ecosystem to continuously improve application

development skills.

15.2 INTRODUCTION

Flutter, primarily known for building mobile applications, has extended its capabilities

to support web and desktop platforms, enabling developers to create cross-platform

applications from a single codebase. This chapter explores how to leverage Flutter

for web and desktop development, covering the key concepts, tools, and best

practices needed to build responsive and performant applications.

163

15.3 FLUTTER FOR WEB AND DESKTOP

Why Flutter for Web and Desktop?

Flutter provides several advantages for building web and desktop applications:

• Single Codebase: Write once, run anywhere. Flutter allows you to maintain a

single codebase for multiple platforms, reducing development and maintenance

efforts.

• Rich UI Components: Flutter’s rich set of pre-built widgets enables the creation

of visually appealing applications with a consistent look and feel across platforms.

• Hot Reload: The hot reload feature in Flutter accelerates the development

process by allowing developers to see changes instantly without restarting the

application.

• Performance: Flutter compiles to native code, providing high performance and

responsiveness, even on web and desktop platforms.

Overview of Flutter for Web and Desktop

Flutter supports building applications for the following platforms:

• Web: Targeting browsers, Flutter for web allows developers to create responsive

web applications that run on any device with a modern web browser.

• Desktop: Flutter for desktop enables building native desktop applications for

Windows, macOS, and Linux, providing a familiar environment for users.

15.4 GETTING STARTED WITH FLUTTER FOR WEB

Setting Up the Environment

To get started with Flutter for web, you need to ensure you have the following

installed:

1. Flutter SDK: Install the latest version of Flutter from the official website.

2. Web Development Tools: Make sure you have a compatible browser (Chrome

is recommended) for testing your web applications.

3. Editor: Use an editor like Visual Studio Code or Android Studio with the Flutter

and Dart plugins.

164

Creating a Flutter Web Project

To create a new Flutter web project, use the following command:

flutter create my_web_app

Navigate to the project directory:

cd my_web_app

To run the project in a web browser, execute:

flutter run -d chrome

Building Responsive Layouts

Creating responsive layouts is crucial for web applications. Flutter offers several

ways to achieve this:

• MediaQuery: Use MediaQuery to get the screen size and orientation to adjust

your layout dynamically.

• LayoutBuilder: Utilize LayoutBuilder to build widgets based on the available

space.

• Responsive Widgets: Consider using responsive widgets like Flexible,

Expanded, and AspectRatio to create adaptive layouts.

Example of a Responsive Layout:

import 'package:flutter/material.dart';

class ResponsiveLayout extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return LayoutBuilder(
 builder: (context, constraints) {
 if (constraints.maxWidth < 600) {
 return Column(
 children: [
 Text('Small Screen'),
 // Add mobile-specific widgets here
],

165

);
 } else {
 return Row(
 children: [
 Text('Large Screen'),
 // Add desktop-specific widgets here
],
);
 }
 },
);
 }
}

Routing And Navigation In Web Applications

Web applications require effective routing and navigation. Flutter provides a robust

navigation system that works well for web applications.

• Named Routes: Define named routes for easy navigation between different

pages.

• Router: Use the Router widget to manage complex navigation scenarios.

Example of Named Routes:

import 'package:flutter/material.dart';

void main() {
 runApp(MyApp());
}

class MyApp extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return MaterialApp(
 title: 'Flutter Web App',
 initialRoute: '/',
 routes: {
 '/': (context) => HomeScreen(),
 '/about': (context) => AboutScreen(),
 },
);
 }
}

class HomeScreen extends StatelessWidget {
 @override
 Widget build(BuildContext context) {

166

 return Scaffold(
 appBar: AppBar(title: Text('Home')),
 body: Center(
 child: ElevatedButton(
 onPressed: () {
 Navigator.pushNamed(context, '/about');
 },
 child: Text('Go to About'),
),
),
);
 }
}

class AboutScreen extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: Text('About')),
 body: Center(child: Text('This is the About page')),
);
 }
}

15.5 BUILDING DESKTOP APPLICATIONS WITH FLUTTER

Setting Up the Desktop Environment

To build Flutter applications for desktop, ensure you have the following:

1. Flutter SDK: Ensure that you have the latest Flutter SDK installed.

2. Desktop Support: Enable desktop support in Flutter by running the following

command:

flutter config --enable-windows-desktop
flutter config --enable-macos-desktop
flutter config --enable-linux-desktop

Creating a Flutter Desktop Project

Creating a desktop project is similar to creating a web project. Use the following

command:

flutter create my_desktop_app

Navigate to the project directory:

cd my_desktop_app

167

To run the desktop application, execute:

flutter run -d windows # For Windows
flutter run -d macos # For macOS
flutter run -d linux # For Linux

Desktop-Specific Features

Flutter for desktop supports several features that enhance the user experience:

• Window Management: Control the window size, position, and behavior of the

application.

• Mouse and Keyboard Events: Respond to mouse and keyboard events to

enhance interactivity.

• Native APIs: Access native features through platform channels to use platform-

specific functionality.

Creating a Desktop-Responsive UI

Building a responsive UI is essential for desktop applications as well. Use the

following techniques:

• Flexible Widgets: Use Flexible and Expanded widgets to create layouts that

adapt to the window size.

• Custom Scrollable Areas: Implement scrollable areas for content that exceeds

the window size.

Example of a Responsive Desktop Layout:

import 'package:flutter/material.dart';

class DesktopResponsiveLayout extends StatelessWidget {
 @override
 Widget build(BuildContext context) {
 return Scaffold(
 appBar: AppBar(title: Text('Desktop App')),
 body: Row(
 children: [
 NavigationDrawer(), // Custom navigation drawer
 Expanded(child: ContentArea()), // Main content area
],
),
);
 }
}

168

15.6 BEST PRACTICES FOR FLUTTER WEB AND
DESKTOP DEVELOPMENT

Performance Optimization

• Lazy Loading: Implement lazy loading for images and data to improve initial load

times.

• Minimize HTTP Requests: Reduce the number of HTTP requests by caching

data and optimizing API calls.

Accessibility

Ensure that your application is accessible to all users by:

• Using semantic widgets (e.g., Semantics) to provide additional context.

• Testing with screen readers to ensure the app is usable for visually impaired

users.

Testing and Debugging

• Use the Flutter DevTools: Leverage Flutter DevTools for debugging and

performance profiling.

• Responsive Testing: Test your application on various screen sizes and

resolutions to ensure proper responsiveness.

15.7 DEPLOYMENT AND PUBLISHING

Web Deployment

To deploy a Flutter web application:

1. Build the web app:

 flutter build web

2. Deploy the contents of the build/web directory to a web server (like Firebase

Hosting, GitHub Pages, or your own server).

Desktop Application Distribution

To distribute desktop applications:

• Windows: Create an installer using tools like Inno Setup or NSIS.

• macOS: Use pkg or dmg files to package the application.

• Linux: Create .deb or .rpm packages for distribution.

169

Check Your Progress

1. What is the primary advantage of using Flutter for web and desktop development?

A) Requires different codebases for each platform

B) Offers a single codebase for multiple platforms

C) Lacks a rich set of widgets

D) Provides limited performance optimization

2. Which command is used to run a Flutter web application in the Chrome browser?

A) flutter build web

B) flutter run -d web

C) flutter run -d chrome

D) flutter start web

3. Which Flutter widget is used to create a responsive layout that adapts to different

screen sizes?

A) Container

B) Column

C) LayoutBuilder

D) Center

4. What is the purpose of using MediaQuery in a Flutter web application?

A) To manage the navigation between different screens

B) To access device information and layout dimensions

C) To handle user input from forms

D) To define global styles for the application

5. When deploying a Flutter web application, which command should you use to

build the production-ready version?

A) flutter package build web

B) flutter run web

C) flutter build web

D) flutter deploy web

15.8 LET US SUM UP

Flutter for web and desktop expands the possibilities for developers, allowing them

to create high-quality, cross-platform applications from a single codebase. With its

rich set of widgets, responsive design capabilities, and support for various platforms,

170

Flutter is an excellent choice for modern application development. By following best

practices and leveraging the tools provided by the Flutter ecosystem, you can build

engaging and performant applications that reach a wider audience across different

platforms.

As the Flutter ecosystem continues to evolve, staying up-to-date with the latest

features and enhancements will further empower you to create remarkable

applications that provide a seamless user experience, whether on the web or

desktop.

15.9 CHECK YOUR PROGRESS: POSSIBLE ANSWERS

1- B) Offers a single codebase for multiple platforms

2- C) flutter run -d chrome

3- C) LayoutBuilder

4- B) To access device information and layout dimensions

5- C) flutter build web

15.10 FURTHER READING

• https://docs.flutter.dev/platform-integration/web/building

• https://flutter.dev/multi-platform/web

• https://flutter.dev/multi-platform/desktop

• https://docs.flutter.dev/platform-integration/desktop

• https://blog.flutter.wtf/desktop-app-with-flutter/

15.11 ASSIGNMENT

1. Discuss the differences in the user interface design considerations between

2. Flutter mobile applications and Flutter web applications. What factors must be

taken into account when designing for different platforms?

3. Explain the role of the Navigator widget in Flutter web applications. How does it

facilitate navigation, and what are the key differences in navigation patterns

between web and mobile applications?

https://docs.flutter.dev/platform-integration/web/building
https://flutter.dev/multi-platform/web
https://flutter.dev/multi-platform/desktop
https://docs.flutter.dev/platform-integration/desktop
https://blog.flutter.wtf/desktop-app-with-flutter/

171

4. Describe how you would implement a responsive layout for a Flutter web

application. What tools and widgets would you use, and how would you ensure

that the layout adapts effectively to various screen sizes?

5. What strategies would you employ to optimize the performance of a Flutter

desktop application? Discuss specific techniques that can be applied to improve

load times and responsiveness.

6. Imagine you are tasked with deploying a Flutter web application to a production

environment. Outline the steps you would take to prepare for deployment,

including any tools or services you would consider using for hosting.

15.12 ACTIVITIES

• Create a basic web application using Flutter that demonstrates understanding of

web development concepts.

• Learn and apply principles of responsive design in Flutter.

• Develop a simple desktop application using Flutter.

• Practice making API calls in a Flutter web application.

• Conduct user testing to gather feedback on a Flutter web or desktop application.

• Learn the steps required to deploy a Flutter web application.

